GHC User’s Guide Documentation
Release 8.10.2

GHC Team

Aug 07, 2020

CONTENTS

The Glasgow Haskell Compiler License 3
Introduction to GHC 5
2.1 Obtaining GHC e e e e e e e e e 5
2.2 Meta-information: Web sites, mailing lists, etc. 6
2.3 Reporting bugsin GHC e e 6
2.4 GHC version numbering policy e 6
Release notes for version 8.10.1 9
3.1 Highlights e e e 9
3.2 Fulldetails. e e e e e e 9
3.2.1 Language i e 9
3.2.2 Compiler. e e e e e e e 12
3.2.3 GHC APIL . . . e e e e e e 13
3.2.4 GHCI e e e e e e e 13
3.2.5 Runtimesystem e 13
3.2.6 Template Haskell 13
3.2.7 ghc-primlibrary e e 14
3.2.8 ghclibrary e e e e 14
3.2.9 baselibrary e e e e 14
3.2.10 Build system e e e e e e 14
3.3 Included libraries e e e e 15
Release notes for version 8.10.2 17
4.1 Highlights o e e e 17
4.2 Fulldetails. e e e e e e 17
4.2.1 Compiler. e e e e e e e e 17
4.2.2 Runtime system e e e e 17
4.2.3 baselibrary e e e e 18
4.2.4 Buildsystem e e e e e 18
4.3 KNOWN ISSUES v v i i i e 18
4.4 Included libraries e e e e e e 18
Using GHCi 21
5.1 Introduction to GHCi e et e 21
5.2 Loading source files e e e e e 22
5.2.1 Modules vs. filenames 23
5.2.2 Making changes and recompilation 23
5.3 Loading compiledcode 23
5.4 Interactive evaluation atthe prompt 25

5.4.1 I/O actionsattheprompt. 26

5.4.2 Using do notation atthe prompt 26
5.4.3 Multilineinput e e e e 28
5.4.4 Type, class and other declarations 29
5.4.5 What’s really in scope at the prompt? 30
5.4.5.1 The effect of :1load on whatisinscope 31

5.4.5.2 Controlling what is in scope with import 32

5.4.5.3 Controlling what is in scope with the :module command 32

5.4.5.4 Qualifiednames e e 33

5.4.5.5 mmoduleand :load 33

5.4.6 The :mainand :runcommands ittt 33
5.4.7 The itvariable. e 34
5.4.8 Typedefaultingin GHCi 35
5.4.8.1 Interactive classes e 36

5.4.8.2 Extended rules around default declarations 36

5.4.9 Using a custom interactive printing function 36
5.4.10 Stack Traces in GHCi i i i e e 37

5.5 The GHCiDebugger i it e e e e e e e e e e e e e 38
5.5.1 Breakpoints and inspecting variables 38
5.5.1.1 Setting breakpoints o 41

5.5.1.2 Managing breakpoints o o 42

5.5.2 Single-stepping e e e e e 42
5.5.3 Nested breakpoints e 43
5.5.4 The resultvariable 43
5.5.5 Tracing and history e e 44
5.5.6 Debugging exceptions e 45
5.5.7 Example: inspecting functions 46
5.5.8 Limitations e e e 47

5.6 Invoking GHCi e e e e e e e 48
5.6.1 Packages e e e e e e e e e 48
5.6.2 Extralibraries e 49

5.7 GHCicommands i it i it it e e e e e e e e e e 49
5.8 The :setand :seticommands, 61
5.8.1 GHCioptions et e e e e e e e 61
5.8.2 Setting GHC command-line options in GHCi 62
5.8.3 Setting options for interactive evaluationonly 62

5.9 The .ghci and .haskelinefiles 63
5.9.1 The .ghcifiles e 63
5.9.2 The .haskelinefile e 64

5.10 Compiling to object code inside GHCi 65
5.11 Running the interpreter in a separate process 65
5.12 Running the interpreter on a differenthost 66
5.13 FAQ and Things To Watch Out For 66
Using runghc 69
6.1 Usage i e e e e e e e e 69
6.2 runghcflags e e e e e e 69
6.3 GHC Flags v v i i i e e e e e e e e e e e e e e e e 70
Using GHC 71
7.1 Using GHC e e e e e 71
7.1.1 Getting started: compiling programs 71
7.1.2 Options OVEIVIEW i i i e e e e e e e e e e e e e e e e e 72
7.1.2.1 Command-line arguments, 72

7.2
7.3

7.4

7.5

7.6

7.7

7.1.2.2 Command line options in sourcefiles 72

7.1.2.3 Settingoptionsin GHCi, 73
7.1.3 Dynamic and Mode options e 73
7.1.4 Meaningful file suffixes o 73
7.1.5 Modes of operation 74

7.1.5.1 Usingghc --make 75

7.1.5.2 Expression evaluationmode 76

7.1.5.3 Batch compilermode, 76
7.1.6 Verbosity options 78
7.1.7 Platform-specific Flags e 83
7.1.8 Miscellaneous flags e e 83

7.1.8.1 Other environment variables 83
Warnings and sanity-checking o e 84
Optimisation (code improvement) e 100
7.3.1 -0%*: convenient “packages” of optimisation flags. 100
7.3.2 -f*: platform-independent flags 101
Using Concurrent Haskell, 112
Using SMP parallelism e e e e e 113
7.5.1 Compile-time options for SMP parallelism 113
7.5.2 RTS options for SMP parallelism 114
7.5.3 Hints for using SMP parallelism 115
Flagreference @ . . @ @ i i i i e e e e e 115
7.6.1 Verbosity options e 115
7.6.2 Alternative modes of operation, 118
7.6.3 Which phasestorun 119
7.6.4 Redirectingoutput e 119
7.6.5 Keeping intermediate files Lo o 120
7.6.6 Temporary files. e e e e e e e 121
7.6.7 Finding imports e e e e e e e 121
7.6.8 Interface file options e 121
7.6.9 Recompilation checking 122
7.6.10 Interactive-mode options e 122
7.6.11 Packages e e e e e e e e e e e 123
7.6.12 Language options o .o e e e e e e e e e e e e e e 124
7.6. 13 Warnings i e e e e e e e e e e e e e e e e e e 124
7.6.14 Optimisation levels e 132
7.6.15 Individual optimisations 133
7.6.16 Profiling options e e 138
7.6.17 Program coverage options e e e e 139
7.6.18 C pre-processor options i i e e e e 139
7.6.19 Code generation options e 139
7.6.20 Linking options e e e e 140
7.6.21 Plugin options e e e e e e 142
7.6.22 Replacing phases i e e e 142
7.6.23 Forcing options to particularphases 143
7.6.24 Platform-specificoptions e 144
7.6.25 Compiler debugging options 144
7.6.26 Miscellaneous compileroptions 149
Running a compiled program e e e e 149
7.7.1 Setting RTSoptions 0 i e e e 149

7.7.1.1 Setting RTS options on the command line 150

7.7.1.2 Setting RTS options at compiletime. 150

7.7.1.3 Setting RTS options with the GHCRTS environment variable 150

7.7.1.4 “Hooks” to change RTS behaviour 151

7.8

7.9

7.10

7.11

7.12

7.7.2 Miscellaneous RTS options 152

7.7.3 RTS options to control the garbage collector. 154
7.7.4 RTS options to produce runtime statistics 161
7.7.5 RTS options for concurrency and parallelism 163
7.7.6 RTS options for profiling 163
7.7.7 TraCing o e 164
7.7.8 RTS options for hackers, debuggers, and over-interested souls 165
7.7.9 Getting information aboutthe RTS, 167
Filenames and separate compilation 168
7.8.1 Haskell source files e 169
7.8.2 Outputfiles e e e e 169
7.8.3 Thesearchpath 170
7.8.4 Redirecting the compilation output(s), 170
7.8.5 Keeping Intermediate Files 172
7.8.6 Redirecting temporary files 173
7.8.7 Other options related to interfacefiles 173
7.8.8 Options related to extended interfacefiles 174
7.8.9 The recompilationchecker. 174
7.8.10 How to compile mutually recursive modules 175
7.8.11 Module signatures e e e e 177
7.8.12 Using make e e e e e e 182
7.8.13 Dependency generation e 184
7.8.14 Orphan modules and instance declarations 185
Packages e e e e e e 187
7.9.1 Using Packages i i e e e 187
7.9.2 Themainpackage i i i e 190
7.9.3 Consequences of packages for the Haskell language 190
7.9.4 Thinning and renaming modules 191
7.9.5 Package Databases e 191

7.9.5.1 The GHC PACKAGE PATH environment variable 193

7.9.5.2 Package environments Lo 193
7.9.6 Installed package IDs, dependencies, and broken packages 194
7.9.7 Package management (the ghc-pkg command) 196
7.9.8 Building a package from Haskell source 199
7.9.9 InstalledPackageInfo: a package specification 200
GHC Backends i e e e e e e 203
7.10.1 Native Code Generator (-fasm), 204
7.10.2 LLVM Code Generator (-fllvm) o o v v i i e i e e 204
7.10.3 C Code Generator (-fvia-C) @ i i i i it 204
7.10.4 Unregisterised compilation 205
Options related to a particularphase 205
7.11.1 Replacing the program for one or more phases 205
7.11.2 Forcing options to a particularphase 206
7.11.3 Options affecting the C pre-processor 207

7.11.3.1Standard CPP macros v i it 208

7.11.3.2CPP and string gaps v v i i it e e e e e e e e e 209
7.11.4 Options affecting a Haskell pre-processor 210
7.11.5 Options affecting code generation 210
7.11.6 Options affecting linking 212
Using shared libraries e e 217
7.12.1 Building programs that use shared libraries 218
7.12.2 Shared libraries for Haskell packages 218
7.12.3 Shared libraries that exporta CAPI 218
7.12.4 Finding shared libraries at runtime 219

7.12.4.0UNIX . . 0oL e e e e e 219

7.12.42Mac OS X e e e e e 220

7.13 Debugging the compiler e 220
7.13.1 Dumping out compiler intermediate structures 221
7.13.1.1Front-end e e e e 222
7.13.1.2Type-checking and renaming 222
7.13.1.3Core representation and simplification 223
7.13.1.4STGrepresentation, 224
7.13.1.5C--representation e 224
7.13.1.6LLVM code generator 225
7.13.1.7Native code generator, 226
7.13.1.8Miscellaneous backend dumps 226

7.13.2 Formatting dumps e e e e e e e e e 227
7.13.3 Suppressing unwanted information 227
7.13.4 Checking for consistency e 228
7.13.5 Checking for determinism 229
7.13.6 Other e e e e e e 229

8 Profiling 231
8.1 Cost centres and cost-centrestacks 231
8.1.1 Inserting costcentresbyhand 234
8.1.2 Rules for attributingcosts 235

8.2 Compiler options for profiling e 235
8.3 Time and allocation profiling e 236
8.3.1 JSON profile format e 237

8.4 Profiling memory USage v v v v i e e e e e e e e e e e e e e e e e e 240
8.4.1 RTS options for heap profiling 241
8.4.2 Retainer Profiling e 242
8.4.2.1 Hints for using retainer profiling 243

8.4.3 Biographical Profiling 243
8.4.4 Actual memoryresidency 244

8.5 hp2ps - Rendering heap profiles to PostScript 245
8.5.1 Manipulatingthe hpfile 246
8.5.2 Zooming in on regions of yourprofile 247
8.5.3 Viewing the heap profile of a running program 247
8.5.4 Viewing a heap profileinrealtime 247

8.6 Profiling Parallel and Concurrent Programs 248
8.7 Observing Code COVETAgE v v i v i i i e e e e e e e e e e e e e e e 248
8.7.1 A small example: Reciprocation 249
8.7.2 Options for instrumenting code for coverage 250
8.7.3 The hpctoolkit e 250
8.7.3.1 hpcreport e e e e e e 251

8.7.3.2 hpcmarkup. e e e e e e e 251

8.7.3.3 hpcsum e e e 252

8.7.3.4 hpccombine e 252

8.7.3.5 hpcmap e e e e e 253

8.7.3.6 hpc overlay and hpcdraft 253

8.7.4 Caveats and Shortcomings of Haskell Program Coverage 254

8.8 Using “ticky-ticky” profiling (for implementors) 254
9 Advice on: sooner, faster, smaller, thriftier 255
9.1 Sooner: producing a program more quickly oL L. 255
9.2 Faster: producing a program that runs quicker 256
9.3 Smaller: producing a program thatissmaller 259

9.4 Thriftier: producing a program that gobbles less heap space 259

10GHC Language Features 261
10.1 Language options v i v i i i e e e e e e e e e e e e e e e e e e 261
10.2 Unboxed types and primitive operations 265

10.2.1 Unboxed types o i i i i e e e e e e e e e e e e e e e 265
10.2.2 Unboxed type kinds e 266
10.2.3 Unboxed tuples i e e e e e 267
10.2.4 Unboxed SUMS ot i it et e e e e e e e e e e e e e e e 268
10.2.5 Unlifted Newtypes o i i e e e e e e e e e e 269
10.3 Syntactic extensions L e e e e e e e e e 270
10.3.1 Unicode syntax v v i i i e e e e e e e e e e e e e e e e e 270
10.3.2 Themagichash e 271
10.3.3 Negative literals e 272
10.3.4 Fractional looking integerliterals 272
10.3.5 Binary integer literals e 272
10.3.6 Hexadecimal floating point literals 272
10.3.7 Numeric UundersSCoTesS v v v v v v e e e e e e e e e e e e e e e e 273
10.3.8 Pattern guards e e e e e e e 274
10.3.9 View patterns e e e e e 275
10.3.1Gh+k patterns e e e e e e e e 277
10.3.1TThe recursive do-notation 277
10.3.11.Recursive binding groups i i e 278
10.3.11.Zhe mdo notation 278
10.3.12Applicative do-notation L oL 280
10.3.12.%trict patterns e 281
10.3.12.Zhings to watchoutfor, 282
10.3.13Farallel List Comprehensions 282
10.3.14Generalised (SQL-like) List Comprehensions 283
10.3.138Monad comprehensions 285
10.3.1&New monadic failure desugaring mechanism 287
10.3.1Rebindable syntax and the implicit Prelude import 288
10.3.17.Things unaffected by RebindableSyntax 289
10.3.1&ostfix operators e e e e e e e e e 289
10.3.19uple sections e e e e e 290
10.3.2@ambda-Ccase it e e e e e e e e e e e e e e e e e e 291
10.3.2 Empty case alternatives e 291
10.3.2Multi-way if-expressions e e e e e e e 292
10.3.23.ocal Fixity Declarations o . 293
10.3.24mport and export extensions e 293
10.3.24.Hiding things the imported module doesn’t export 293
10.3.24.Rackage-qualified imports, 294
10.3.24.8afeimports e e e e 294
10.3.24.Bxplicit namespaces in import/export 295
10.3.24.Writing qualified in postpositive position 295
10.3.2More liberal syntax for function arguments 296
10.3.25.Changes to the grammar 296
10.3.26ummary of stolen syntax e 297
10.4 Extensions to data types and type synonyms 298
10.4.1 Data types with no constructors 298
10.4.2 Data type contexts L e 299
10.4.3 Infix type constructors, classes, and type variables 299
10.4.4 Type operators v v i v i e e e e e e e e e e e e e e e e e e 300
10.4.5 Liberalised type Synonyms 0 i it i i e e e e e e 300

Vi

10.4.6.1Why existential? e 303
10.4.6.2Existentials and type classes, 303
10.4.6.3Record Constructors 303
10.4.6.4Restrictions e e e e e e e e 304
10.4.7 Declaring data types with explicit constructor signatures 306
10.4.8 Generalised Algebraic Data Types (GADTS) 310
10.5 Extensions totherecord system 312
10.5.1 Traditional record syntax 312
10.5.2 Record field disambiguation 312
10.5.3 Duplicate record fields e 313
10.5.3.1Selector functions e 314
10.5.3.2Record updates e 314
10.5.3.3Import and export of record fields 315
10.5.4 Record PUNS o i i i e e e e e e e e e e e e e e e e e e e 315
10.5.5 Record wildcards e e e 316
10.5.6 Record field selector polymorphism 318
10.5.6.1Solving HasField constraints 318
10.5.6.2Virtual record fields 320

10.6 Extensions to the “deriving” mechanism. 321
10.6.1 Deriving instances for empty datatypes 321
10.6.2 Inferred context for deriving clauses 322
10.6.3 Stand-alone deriving declarations, 322
10.6.4 Deriving instances of extra classes (Data, etc.) 324
10.6.4.1Deriving Functorinstances 325
10.6.4.2Deriving Foldable instances 328
10.6.4.3Deriving Traversableinstances 330
10.6.4.4Deriving Datainstances 331
10.6.4.5Deriving Typeableinstances 331
10.6.4.6Deriving Liftinstances 332
10.6.5 Generalised derived instances for newtypes 333
10.6.5.1Generalising the derivingclause 333
10.6.5.2A more precise specification, 335
10.6.5.3Associated type families o o oL, 336
10.6.6 Deriving any otherclass, 339
10.6.7 Deriving strategies i i i i e e e e e e e e e 341
10.6.7.1Default deriving strategy oL o oL 342
10.6.8 DErivINg VIA .« . v v v v o e 342
10.7 Pattern synonyms o . i e e e e e e e e e e e e e e e 344
10.7.1 Record Pattern Synonyms 347
10.7.2 Syntax and scoping of pattern synonyms 348
10.7.3 Import and export of pattern synonyms 348
10.7.4 Typing of pattern synonyms 349
10.7.5 Matching of pattern synonyms 352
10.8 Class and instances declarations 352
10.8.1 Class declarations i i i i e e e 352
10.8.1.1Multi-parameter type classes, 353
10.8.1.2The superclasses of a class declaration 353
10.8.1.3Constrained class method types 354
10.8.1.4Default method signatures 354
10.8.1.5Nullary type classes i i ittt 356
10.8.2 Functional dependencies 356
10.8.2.1Rules for functional dependencies 357
10.8.2.2Background on functional dependencies 357

vii

10.8.3 Instance declarations e e
10.8.3.1Instanceresolution
10.8.3.2Relaxed rules for the instance head
10.8.3.3Relaxed rules for instance contexts
10.8.3.4Instance terminationrules
10.8.3.5Undecidable instances
10.8.3.60verlapping instances 0 e
10.8.3.7Instance signatures: type signatures in instance declarations . . .

10.8.4 Overloaded string literals

10.8.5 Overloaded labels e

10.8.6 Overloaded lists e
10.8.6.1The IsListclass i i i i i it
10.8.6.2Rebindable syntax. L e
10.8.6.3Defaulting e e
10.8.6.4Speculation about the future

10.8.7 Undecidable (or recursive) superclasses

10.9 Type families e e e e e

10.9.1 Data families e e e e e e
10.9.1.1Data family declarations,
10.9.1.2Data instance declarations
10.9.1.30verlap of datainstances

10.9.2 Synonym families e
10.9.2.1Type family declarations
10.9.2.2Type instance declarations
10.9.2.3Closed type families
10.9.2.4Type family examples
10.9.2.5Compatibility and apartness of type family equations
10.9.2.6Decidability of type synonym instances

10.9.3 Wildcards on the LHS of data and type family instances

10.9.4 Associated data and type families
10.9.4.1Associated instances o .
10.9.4.2Associated type synonym defaults
10.9.4.3Scoping of class parameters,
10.9.4.4Instance contexts and associated type and data instances

10.9.5 Import and export e e e e e e e e
10.9.5.1Examples e e e e e e e e
10.9.5.2Instances e e e e e e e e e e e e e e

10.9.6 Type families and instance declarations

10.9.7 Injective type families L e
10.9.7.1Syntax of injectivity annotation.
10.9.7.2Verifying the injectivity annotation against type family equations .

10.1Matatype promotion i e e e e e e e e

10.10. IMotivation o . i e e e e e e e e e e e e e e e e

10.10.2DVEIVIEW . . . v ot i e

10.10.dDistinguishing between types and constructors

10.10.Promoted list and tuple types o e

10.10.®Promoting existential data constructors.

10.11Kind polymorphism e
10.11.10verview of kind polymorphism

10.11.Dverview of Type-in-Type o i i it i e i e e e e

10.11.Principles of kind inference

10.11.4nferring the order of variables in a type/class declaration
10.11.8Complete user-supplied kind signatures and polymorphic recursion
10.11.6tandalone kind signatures and polymorphic recursion

viii

10.11.7Standalone kind signatures and declaration headers 403

10.11.&Kind inference in closed type families 404
10.11.XKind inference in class instance declarations 405
10.11.10ind inference in type signatures. 405
10.11.1Bxplicit kind quantification 406
10.11.I2nplicit quantification in type synonyms and type family instances 406
10.11.Kind-indexed GADTS o 0 i i it e e e e e e e e e e e e e 408
10.11.Higher-rank kinds e 408
10.11.1Gonstraints in kinds e 409
10.11.Tfhe kind Type o o e e e e e e e e e e e e 409
10.11.T#Aferring dependency in datatype declarations 410
10.11.1&ferring dependency in user-written foralls 410
10.11.10ind defaulting without PolyKinds 411
10.11.Rretty-printing in the presence of kind polymorphism 411
10.12Zevity polymorphism 411
10.12.1No levity-polymorphic variables or arguments 412
10.12.Aevity-polymorphic bottoms 412
10.12.®rinting levity-polymorphic types o oL 413
10.13Type-Level Literals e e e e e e e e 413
10.13.Runtime Values for Type-Level Literals 414
10.13.Zomputing With Type-Level Naturals 415
10.14Equality constraints, Coercible, and the kind Constraint 415
10.14.FEquality constraints e 415
10.14. Heterogeneous equality o e 416
10.14.3Jnlifted heterogeneous equality 416
10.14.4The Coercible constraint 416
10.14.5The Constraint kind 416
10.13Quantified constraints L e e e e e e e e e 417
10.15. IMotivation. o o e e e e e e e e e e e e e 418
10.15.5yntax changes i i e e e e e e e 419
10.15.3yping changes o e e e e 420
10.15.45UPerClassSes v v v i i e e e e e e e e e e e e e e e e e e e 420
10.15.80verlap o e e e e e e e e e e e 420
10.15.dnstance looKUD e e e e e e e e 421
10.15. 7Termination e e e e e e e 422
10.15.820herence e e e e e e e e e e 422
10.1@&xtensions to type signatureso e e 422
10.16.IExplicit universal quantification (forall) 422
10.16.2ZThe context of a type signature 423
10.16.3Ambiguous types and the ambiguitycheck 423
10.16.£&xplicitly-kinded quantification 425
10.17Lexically scoped type variables 426
10.17.10VEIVIEW . . . o it i e 427
10.17.Declaration type signatures e e 428
10.17.Fxpression type signatures o o0 429
10.17.4Pattern type signatures e e e 429
10.17.%lass and instance declarations. 0., 430
10.18indings and generalisation, 430
10.18.1Switching off the dreaded Monomorphism Restriction 430
10.18.Zet-generalisation e e e 431
10.1%isible type application e 432
10.19.1Iinferred vs. specified type variables 432
10.19.Drdering of specified variables 433
10.20mplicit parameters e e e e e e e e e e e e e 434

ix

10.20.Implicit-parameter type constraints 435

10.20.2mplicit-parameter bindings o L oo 436
10.20.3mplicit parameters and polymorphic recursion 436
10.20.4mplicit parameters and monomorphism 437
10.21Arbitrary-rank polymorphism oo o 437
10.21. FExamples o o e e e e e e e e e e e e e e 438
10.21.2Type inference i i e e e e e e e e e e e e 440
10.21.3mplicit quantification L o oL 440
10.22Zmpredicative polymorphism e 441
10.23Typed Holes o e e e e e e 442
10.23.IValid Hole Fits e e e 446
10.23.1.Refinement Hole Fits 447
10.23.1.3orting Valid Hole Fits 449
10.24Partial Type Signatures i i i e e e e e e e 449
10.24.1Syntax e e e e e e e e e e e e e e e e 450
10.24.1.Type Wildcards @ i i i ittt i 450
10.24.1.Ramed Wildcards i i i i i e e 451
10.24.1.Bxtra-Constraints Wildcard 452

10.24. 2Where can they occur? i it e e e 453
10.28Custom compile-time errors e 454
10.2@eferring type errors to runtime L Lo e 455
10.26.FEnabling deferring of typeerrors. 456
10.26.Deferred type errors in GHCi 456
10.26.3.imitations of deferred typeerrors., 457
10.27Template Haskell e e e e e e 457
10.27.1Syntax o e e e e e e e e e e e e e e e e e e 458
10.27.2Using Template Haskell, 462
10.27.&iewing Template Haskell generatedcode 463
10.27.4A Template Haskell Worked Example 464
10.27.3Jsing Template Haskell with Profiling 465
10.27.6l'emplate Haskell Quasi-quotation 465
10.28Arrow notation L e e e e e e e e e e e e 468
10.28.1do-notation for commandso e 470
10.28.Londitional commands e e 471
10.28.Pefining your own control structures 471
10.28.Primitive constructs e e e e 472
10.28.Differences withthepaper.. 474
10.28.@Portability e e e e e e e 474
10.28Bang patterns and Strict Haskell 474
10.29.1Bang patterns e e e e e e e e 475
10.29.5trict-by-default data types e 476
10.29.3Ftrict-by-default pattern bindings 476
10.29.Modularity e e e e e e e e e 478
10.29.Dynamic semantics of bang patterns., 479
10.3MASSETLIONS . . . v v o o e s e e e e e e e e e e e e e e 481
10.31Static pointers e e e e e e e e e e e e 482
10.31.WUsing static pointers e 482
10.31.5tatic semantics of static pointers 0L, 483
10.32PTagmas . . v v v v e 484
10.32.LANGUAGE pragma v v v v v e e e e e e e e e e e e e e e e e e 485
10.32.0DPTIONS GHC pragma ¢ v v v v v e e e e e e e e e e e e e e e e e o 485
10.32.3INCLUDE Pragma ¢ v v v v e 485
10.32.4JARNING and DEPRECATED pragmas v v v v v v v v v e v oo e e 486

10.32.MINIMAL Pragma v v v v e 487

10.32.GNLINE and NOINLINE Pragmas « ¢ v v v v v v v v e e e e e e e e e e a s 487

10.32.6.INLINE pragma o v it i e e e e e e e e e e e e e e e e e 487
10.32.6.ENLINABLE pragma o v i v i i e i e e e e et e e e e e 489
10.32.6.BOINLINE pragma ¢ v v v v v it e e e e e e e e e e e e e e u 490
10.32.6.@0NLIKE modifier i 490
10.32.6.Bhase control 490
10.32.LINE PTragmma .« v v v v v e 491
10.32.80LUMN Pragma v v v v e 491
10.32.RULES pragma i i it e e e e e e e e e e e e e e e e e 492
10.32.19PECTALIZE Pragma . . « « v v v v v e 492
10.32.1GRECIALIZE INLINE it 493
10.32.1BRECIALIZE for imported functions 494
10.32.1SPECIALIZE instance pragma v v v v v v v vt et e e e e e e e 495
10.32. 1NPACK Pragma v v v o e 495
10.32.NDUNPACK pragma v v o o e e e e e e e e e e e e e e e e e e e 496
10.32.18DURCE Pragma v v v v v e e e e e e e e e e e e e e e e e e 496
10.32. 1DMPLETE pragmas v v v v i e e e e e e e e e e e e e e e e e e e 496
10.32.18/ERLAPPING, OVERLAPPABLE, OVERLAPS, and INCOHERENT pragmas 497
10.3Rewriterules e e e e e e 498
10.33.1Syntax e e e e e e e e e e e e e e e 498
10.33.5emantiCs i i e 500
10.33.FHow rules interact with INLINE/NOINLINE pragmas. 501
10.33.4How rules interact with CONLIKE pragmas 501
10.33.How rules interact with class methods 502
10.33.dist fusion L e e e e e e 503
10.33.Bpecialisation. e e e e 504
10.33.&ontrolling what’s going on in rewriterules 504
10.34Special built-in functions e 505
10.35Generic Classes i i e e e e e e e e e e e e e e 505
10.36Generic programming v v v v v v e e e e e e e e e e e e e e e e e e e 505
10.36.Deriving representations o0 e e e 505
10.36.20riting generic functionso o 507
10.36.3Unlifted representation types L o oo 508
10.36.4Generic defaults L e e 508
10.36.More information e e e e e 509
10.37R01ES . . o o e e e e e e e e e e 509
10.37.INominal, Representational, and Phantom 510
10.37.Role inference e e e 510
10.37.Ro0le annotations e e e e e e 511
10.38asCallStack e e e e e e e 512
10.38.1Compared with other sources of stacktraces 514
10.3%Concurrent and Parallel Haskell 514
10.39.1Concurrent Haskell 515
10.39.5oftware Transactional Memory, 515
10.39.Farallel Haskell e 515
10.39./Annotating pure code for parallelism 516
10.4Bafe Haskell e e e e e 517
10.40.1Uses of Safe Haskell 517
10.40.1.%trict type-safety (good style) 517
10.40.1.Building secure systems (restricted IO Monads) 518
10.40.5afe Language o o i it e e e e e e e e e e e e e e e e e 520
10.40.2.%afe Overlapping Instances 521
10.40.Fafe Imports e e e e e e e 522
10.40.4rust and Safe Haskell Modes, 522

Xi

10.40.4.Trust check (-fpackage-trustdisabled) 523

10.40.4.Zrust check (-fpackage-trustenabled) 523
10.40.4.Bxample e e e e e e e e e e e 524

10.40.4 Irustworthy Requirements 525
10.40.4.Backage Trust e 525
10.40.F5afe Haskell Inference 525
10.40.6afe Haskell Flag Summary i v vt vttt oo 526
10.40.5afe Compilation e e e e 528
11Foreign function interface (FFI) 529
11.1 GHC differences to the FFI Chapter 529
11.1.1 Guaranteed call safety e 529

11.2 GHC extensions to the FFI Chapter. 530
11.2.1 Unlifted FFITypes« o o i e e e e e e i e e e e e 530
11.2.2 Newtype wrapping of the IOmonad 532
11.2.3 Explicit “forall”’s in foreigntypes o o 532
11.2.4 Primitive imports e e e e e e 533
11.2.5 Interruptible foreigncalls 533
11.2.6 The CAPI callingconvention, 534
11.2.7 hs _thread done() @ i e e e 534
11.2.8 Freeing many stable pointers efficiently 535

11.3 Using the FFIwith GHC e e e e e et 535
11.3.1 Using foreign export and foreign import ccall "wrapper" with GHC 535
11.3.1.1Using your own main() v v v v it i v v et 536
11.3.1.2Making a Haskell library that can be called from foreign code . . . 538

11.3.2 Using headerfiles e 539
11.3.3 Memory Allocation e e e e 539
11.3.4 Multi-threadingand the FFI 540
11.3.4.1Foreign imports and multi-threading 540
11.3.4.2The relationship between Haskell threads and OS threads 540
11.3.4.3Foreign exports and multi-threading 541
11.3.4.40ntheuseof hs exit() 541
11.3.4.5Waking up Haskell threads from C. 541

11.3.5 Floating pointand the FFI, 543
11.3.6 Pinned Byte Arrays o o i e e e e e e 544

12 Extending and using GHC as a Library 545
12.1 Source annotations e e 545
12.1.1 Annotating values e 545
12.1.2 Annotating types o e e e e e e e e e 546
12.1.3 Annotatingmodules L e e 546

12.2 Using GHC asa Library i i it e e e e e e e e e e e e 546
12.3 Compiler Plugins e e e e e e e e e e e 547
12.3.1 Using compiler plugins e 547
12.3.2 Writing compiler plugins 549
12.3.3 Core pluginsinmore detail, 550
12.3.3.1Manipulating bindingso ... 550
12.3.3.2Using Annotations e 551

12.3.4 Typechecker plugins e e 552
12.3.4.1Constraint solving with plugins 553

12.3.5 Source plugins e e e e e e e e e 553
12.3.5.1Parsed representation, 554
12.3.5.2Type checked representation 554
12.3.5.3Evaluated code 554

xii

12.3.5.4Interface files e
12.3.5.5Source pluginexample
12.3.6 Hole fitplugins e e e e e e e
12.3.6.1Stateful hole fit plugins, .
12.3.6.2Hole fit plugin example
12.3.7 Controlling Recompilation,
12.3.8 Frontend plugins. e e e e e
12.3.9 DynFlags plugins @ e e e e e e e

13What to do when something goes wrong

13.1 When the compiler “does the wrong thing”
13.2 When your program “does the wrong thing”

14 Debugging compiled programs

14.1 Tutorial o o e e e e
14.2 Requesting a stack trace from Haskellcode
14.3 Requesting a stack trace with SIGQUIT
14.4 Implementor’s notes: DWARF annotations
14.4.1 Debugging information entities oo oo
14.4.1.1DW TAG ghc src note i it

14.5 Further Reading i i i e e e e e e e e e e e e

15 Other Haskell utility programs

15.1 “Yacc for Haskell”: happy o o i i i e e e e e e e e e
15.2 Writing Haskell interfaces to C code: hsc2hs
15.2.1 command line syntax e
15.2.2 Input syntax L e e e e e e e e e
15.2.3 Custom constructs i e e e e e e e e
15.2.4 Cross-compilation e

16 Running GHC on Win32 systems

16.1 Starting GHC on Windows platforms
16.2 Running GHCi on Windows 0 v i i i i i e e e e e e e e
16.3 Interacting with the terminal
16.4 Differences in library behaviour o oo ..
16.5 File paths under Windows i
16.6 Using GHC (and other GHC-compiled executables) with Cygwin
16.6.1 Background e e e e e e e
16.6.2 The problem e e e e
16.6.3 Thingstodo i it e et e e et e e

16.7 Building and using Win32 DLLs 0 i e
16.7.1 Creatinga DLL it e e e e e e e e e
16.7.2 Making DLLs to be called from other languages.
16.7.2.1Using from VBA e e e e
16.7.2.2Using from C++ e e e e e e

17 Known bugs and infelicities

17.1 Haskell standards vs. Glasgow Haskell: language non-compliance
17.1.1 Divergence from Haskell 98 and Haskell 2010.
17.1.1.1Lexical syntax e
17.1.1.2Context-freesyntax e
17.1.1.3Expressions and patterns,
17.1.1.4Declarations and bindings
17.1.1.5Typechecking of recursive binding groups
17.1.1.6Default Module headers with -main-is.

17.1.1.7Module system and interfacefiles 590
17.1.1.8Numbers, basic types, and built-inclasses 591
17.1.1.9In Prelude support i it e 592
17.1.1.1The Foreign Function Interface 593
17.1.1.10perator sections i i i i e e e e e 593

17.1.2 GHC’s interpretation of undefined behaviour in Haskell 98 and
Haskell 2010 o e e e e e e e e 593
17.2 Known bugs or infelicities e 594
17.2.1 Bugsin GHC e e e e e e e e e e e e e 594
17.2.2 Bugs in GHCIi (the interactive GHC) 596
18 Eventlog encodings 597
18.1 Event log format e 597
18.2 Runtime system diagnostics L L e 598
18.2.1 Capability sets o e e e e e 598
18.2.2 Environment information. Lo o o 598
18.2.3 Thread and schedulingevents. 599
18.2.4 Garbage collectorevents o e 601
18.2.5 Heap events and statistics 602
18.2.6 Spark events e e e e e e e e 603
18.2.7 Capability events e e e e 604
18.2.8 Task events o i e e e e e e e 604
18.2.9 Tracing events i i i e e e e e e e e e e 605
18.3 Heap profiler event logoutput. 606
18.3.1 Metadata event types e e e 606
18.3.1.1Beginning of sample stream oL 606
18.3.1.2Cost centre definitions oo o oo 607
18.3.1.3Sample event types 607
18.3.1.4Cost-centre break-down oL, 608
18.3.1.5String break-down L oL 608
18.4 Time profiler eventlogoutput e 608
18.4.1 Profile beginevent 609
18.4.2 Profile sample event. e 609
18.5 Biographical profile sampleevent. o0, 609
18.6 Non-moving GC eventoutput 609
18.6.1 Non-moving heap census i i i ittt 610
19Care and feeding of your GHC User’s Guide 611
19.1 BaSICS . . & o v o e e e e e e e e 611
19.1.1 Headings o v i i i et e e e e e e e e e e e e e e e e e e 612
19.1.2 Formatting code e e e e e 613
19.1.2.1Haskell e e e 613
19.1.2.20ther languages e e e e 613
19.1.3 Links o e e e e e 613
19.1.3.1Within the User's Guide 613
19.1.3.2To GHC Ie€SOUTICES . . .+ v v v v v e e e e e e e e e e e e e e e e e e e 614
19.1.3.3To external resources v v i i v i it 614
19.1.3.4To core library Haddock documentation 614
19.1.3.5Math e e 614
19.1.4 Index entries i e e e e e e e e e 615
19.2 Citations o v i e e e e e e e e e e e e e e e e e e e 615
19.3 Admonitions L e e e e e e e e e e 615
19.4 Documenting command-line options and GHCi commands 616
19.4.1 Command-line options e 616

xiv

19.4.2 GHCicommands v i i i i e e e e e e e e e 617

19.5 Style Conventions i i i i e e e e e e e e e e 617

19.6 ReST reference materials o o o i i i i e e 617
20Indices and tables 619
Bibliography 621

Xv

GHC User’s Guide Documentation, Release 8.10.2

Contents:

CONTENTS 1l

GHC User’s Guide Documentation, Release 8.10.2

2 CONTENTS

CHAPTER
ONE

THE GLASGOW HASKELL COMPILER LICENSE

Copyright 2002 - 2007, The University Court of the University of Glasgow. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither name of the University nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permis-
sion.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
GLASGOW AND THE CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

GHC User’s Guide Documentation, Release 8.10.2

4 Chapter 1. The Glasgow Haskell Compiler License

CHAPTER
TWO

INTRODUCTION TO GHC

This is a guide to using the Glasgow Haskell Compiler (GHC): an interactive and batch com-
pilation system for the Haskell 2010 language.

GHC has two main components: an interactive Haskell interpreter (also known as GHCi),
described in Using GHCi (page 21), and a batch compiler, described throughout Using GHC
(page 71). In fact, GHC consists of a single program which is just run with different options
to provide either the interactive or the batch system.

The batch compiler can be used alongside GHCi: compiled modules can be loaded into an
interactive session and used in the same way as interpreted code, and in fact when using
GHCi most of the library code will be pre-compiled. This means you get the best of both
worlds: fast pre-compiled library code, and fast compile turnaround for the parts of your
program being actively developed.

GHC supports numerous language extensions, including concurrency, a foreign function in-
terface, exceptions, type system extensions such as multi-parameter type classes, local uni-
versal and existential quantification, functional dependencies, scoped type variables and ex-
plicit unboxed types. These are all described in GHC Language Features (page 261).

GHC has a comprehensive optimiser, so when you want to Really Go For It (and you’ve got time
to spare) GHC can produce pretty fast code. Alternatively, the default option is to compile as
fast as possible while not making too much effort to optimise the generated code (although
GHC probably isn’t what you’d describe as a fast compiler :-).

GHC'’s profiling system supports “cost centre stacks”: a way of seeing the profile of a Haskell
program in a call-graph like structure. See Profiling (page 231) for more details.

GHC comes with a number of libraries. These are described in separate documentation.

2.1 Obtaining GHC

Go to the GHC home page and follow the “download” link to download GHC for your platform.

Alternatively, if you want to build GHC yourself, head on over to the GHC Building Guide to
find out how to get the sources, and build it on your system. Note that GHC itself is written
in Haskell, so you will still need to install GHC in order to build it.

http://www.haskell.org/
http://www.haskell.org/ghc/
https://gitlab.haskell.org/ghc/ghc/wikis/building

GHC User’s Guide Documentation, Release 8.10.2

2.2 Meta-information: Web sites, mailing lists, etc.

On the World-Wide Web, there are several URLs of likely interest:
* GHC home page
* GHC Developers Home (developer documentation, wiki, and bug tracker)

We run the following mailing lists about GHC. We encourage you to join, as you feel is appro-
priate.

glasgow-haskell-users This list is for GHC users to chat among themselves. If you have a
specific question about GHC, please check the FAQ first.

Subscribers can post to the list by sending their message to glasgow-haskell-
users@haskell.org. Further information can be found on the Mailman page.

ghc-devs The GHC developers hang out here. If you are working with the GHC API or have
a question about GHC’s implementation, feel free to chime in.

Subscribers can post to the list by sending their message to ghc-devs@haskell.org. Fur-
ther information can be found on the Mailman page.

There are several other Haskell and GHC-related mailing lists served by www.haskell.org.
Go to http://www.haskell.org/mailman/listinfo/ for the full list.

2.3 Reporting bugs in GHC

Glasgow Haskell is a changing system so there are sure to be bugs in it. If you find one, please
see this wiki page for information on how to report it.

2.4 GHC version numbering policy

As of GHC version 6.8, we have adopted the following policy for numbering GHC versions:

Stable branches are numbered x .y, where {y) is even. Releases on the stable branch
x.y are numbered x.y.z, where (z) (>= 1) is the patchlevel number. Patchlevels are
bug-fix releases only, and never change the programmer interface to any system-
supplied code. However, if you install a new patchlevel over an old one you will
need to recompile any code that was compiled against the old libraries.

The value of = GLASGOW HASKELL (see Options affecting the C pre-processor
(page 207)) for a major release x.y.z is the integer (xyy) (if (y) is a single digit,
then a leading zero is added, so for example in version 6.8.2 of GHC we would have
__ GLASGOW_HASKELL ==608).

We may make snapshot releases of the current stable branch available for download,
and the latest sources are available from the git repositories.

Stable snapshot releases are named x.y.z.YYYYMMDD. where YYYYMMDD is the date
of the sources from which the snapshot was built, and x.y.z+1 is the next release
to be made on that branch. For example, 6.8.1.20040225 would be a snapshot of
the 6.8 branch during the development of 6.8.2.

We may make snapshot releases of the HEAD available for download, and the latest
sources are available from the git repositories.

6 Chapter 2. Introduction to GHC

http://www.haskell.org/ghc/
https://gitlab.haskell.org/ghc/ghc
http://www.haskell.org/haskellwiki/GHC/FAQ
mailto:glasgow-haskell-users@haskell.org
mailto:glasgow-haskell-users@haskell.org
http://www.haskell.org/mailman/listinfo/glasgow-haskell-users
mailto:ghc-devs@haskell.org
http://www.haskell.org/mailman/listinfo/ghc-devs
http://www.haskell.org/mailman/listinfo/
https://gitlab.haskell.org/ghc/ghc/wikis/report-a-bug
http://www.haskell.org/ghc/dist/stable/dist/
https://gitlab.haskell.org/ghc/ghc/wikis/repositories
http://www.haskell.org/ghc/dist/current/dist/
https://gitlab.haskell.org/ghc/ghc/wikis/repositories

GHC User’s Guide Documentation, Release 8.10.2

Unstable snapshot releases are named x.y.YYYYMMDD. where YYYYMMDD is the date of
the sources from which the snapshot was built. For example, 6.7.20040225 would
be a snapshot of the HEAD before the creation of the 6.8 branch.

The value of GLASGOW HASKELL for a snapshot release is the integer (xyy). You
should never write any conditional code which tests for this value, however: since
interfaces change on a day-to-day basis, and we don’t have finer granularity in the
values of GLASGOW HASKELL , you should only conditionally compile using pred-
icates which test whether GLASGOW HASKELL is equal to, later than, or earlier
than a given major release.

The version number of your copy of GHC can be found by invoking ghc with the --version
flag (see Verbosity options (page 78)).

The compiler version can be tested within compiled code with the
MIN VERSION GLASGOW HASKELL CPP macro (defined only when CPP (page 207) is used).
See Standard CPP macros (page 208) for details.

2.4. GHC version numbering policy 7

GHC User’s Guide Documentation, Release 8.10.2

8 Chapter 2. Introduction to GHC

CHAPTER
THREE

RELEASE NOTES FOR VERSION 8.10.1

The significant changes to the various parts of the compiler are listed in the following sections.

3.1 Highlights

The UnliftedNewtypes (page 269) extension, allowing newtypes to be wrap types of kind
other than Type.

The StandaloneKindSignatures (page 402) extension, allowing explicit signatures on
type constructors.

A new, low-latency garbage collector (page 154) for the oldest generation.

3.2 Full details

3.2.1 Language

Kind variables are no longer implicitly quantified when an explicit forall is used, see
GHC proposal #24. -Wimplicit-kind-vars (page 91) is now obsolete.

Kind variables are no longer implicitly quantified in constructor declarations:

data T a
data T (a :: k)

T1 (S (a :: k)) | forall (b::k). T2 (S b) -- no longer accepted
T1 (S (a :: k)) | forall (b::k). T2 (S b) -- still accepted

Implicitly quantified kind variables are no longer put in front of other variables:

f :: Proxy (a :: k) -> Proxy (b :: j)

ghci> :t +v f -- old order:
f :: forall k j (a :: k) (b :: j). Proxy a -> Proxy b

ghci> :t +v f -- new order:
f :: forall k (a :: k) j (b :: j). Proxy a -> Proxy b

This is a breaking change for users of TypeApplications (page 432).

In type synonyms and type family equations, free variables on the RHS are no longer
implicitly quantified unless used in an outermost kind annotation:

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0024-no-kind-vars.rst

GHC User’s Guide Documentation, Release 8.10.2

Just (Nothing :: Maybe a) -- no longer accepted
Just Nothing :: Maybe (Maybe a) -- still accepted

type T
type T

* A new extension StandaloneKindSignatures (page 402) allows one to explicitly specify

the kind of a type constructor, as proposed in GHC proposal #54:

type TypeRep :: forall k. k -> Type
data TypeRep a where

TyInt :: TypeRep Int
TyMaybe :: TypeRep Maybe
TyApp :: TypeRep a -> TypeRep b -> TypeRep (a b)

Analogous to function type signatures, a standalone kind signature (page 402) enables
polymorphic recursion. This feature is a replacement for CUSKs (page 399).

Note: The finer points around this feature are subject to change. In particular, it is likely
that the treatment around specified and inferred (page 432) variables may change, to
become more like the way term-level type signatures are handled.

GHC now parses visible, dependent quantifiers (as proposed in GHC proposal 35), such
as the following:

data Proxy :: forall k -> k -> Type

See the section on explicit kind quantification (page 406) for more details.

Type variables in associated type family default declarations can now be explicitly bound
with a forall when ExplicitForAll (page 422) is enabled, as in the following example:

class C a where
type T a b
type forall a b. T a b = Either a b

This has a couple of knock-on consequences:

- Wildcard patterns are now permitted on the left-hand sides of default declarations,
whereas they were rejected by previous versions of GHC.

- It used to be the case that default declarations supported occurrences of left-hand
side arguments with higher-rank kinds, such as in the following example:

class C a where
type T a (f :: forall k. k -> Type)
type T a (f :: forall k. k -> Type) = f Int

This will no longer work unless f is explicitly quantified with a forall, like so:

class C a where
type T a (f :: forall k. k -> Type)
type forall a (f :: forall k. k -> Type).
Taf=r°Int

* A new extension UnliftedNewtypes (page 269) that relaxes restrictions around what

kinds of types can appear inside of the data constructor for a newtype. This was proposed
in GHC proposal #13.

* A new extension ImportQualifiedPost (page 295) allows the syntax import M

qualified, that is, to annotate a module as qualified by writing qualified after the
module name. This was proposed in GHC proposal #49.

10

Chapter 3. Release notes for version 8.10.1

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0054-kind-signatures.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0081-forall-arrow.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0013-unlifted-newtypes.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0049-module-qualified-syntax.rst

GHC User’s Guide Documentation, Release 8.10.2

* New flag -Wderiving-defaults (page 89) that controls a warning message when both
DeriveAnyClass (page 339) and GeneralizedNewtypeDeriving (page 333) are enabled
and no explicit deriving strategy is in use. The warning is enabled by default and has
been present in earlier GHC versions but without the option of disabling it. For example,
this code would trigger the warning:

class C a
newtype T a = MkT a deriving C

* GHC now performs more validity checks on inferred type signatures. One consequence
of this change is that some programs that used to be accepted will no longer compile
without enabling the required language extensions. For example, in these two modules:

{-# LANGUAGE RankNTypes #-}
module A where

foo :: (forall a. a -=>a) ->b ->b
foo f x = f x

module B where
import A

bar = foo

Notice that A enables -XRankNTypes (page 437), but B does not. Previous versions of
GHC would allow bar to typecheck, even though its inferred type is higher-rank. GHC
8.10 will now reject this, as one must now enable -XRankNTypes (page 437) in B to accept
the inferred type signature.

* Type family dependencies (also known as injective type families) sometimes now need
-XUndecidableInstances (page 363) in order to be accepted. Here is an example:

type family Fla=r | r -> a
type family F2 a=r | r -> a
type instance F2 [a] = Maybe (F1l a)

Because GHC needs to look under a type family to see that a is determined by the right-
hand side of F2’s equation, this now needs -XUndecidableInstances (page 363). The
problem is very much akin to its need to detect some functional dependencies.

* The pattern-match coverage checker received a number of improvements wrt. correct-
ness and performance.

Checking against user-defined COMPLETE pragmas “just works” now, so that we could
move away from the complicated procedure for disambiguation we had in place before.

Previously, the checker performed really badly on some inputs and had no good story for
graceful degradation in these situations. These situations should occur much less fre-
quently now and degradation happens much more smoothly, while still producing useful,
sound results (see - fmax-pmcheck-models=(n) (page 91)).

3.2. Full details 11

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#disambiguating-between-multiple-complete-pragmas

GHC User’s Guide Documentation, Release 8.10.2

3.2.2 Compiler

The LLVM backend (page 210) of this release is to be used with LLVM 9.

(x86) Native code generator support for legacy x87 floating point coprocessor has been
removed. From this point forth GHC will only support floating point via SSE2.

New -Wunused-packages (page 99) warning reports unused packages.

Add new flags -Wunused-record-wildcards (page 98) and
-Wredundant-record-wildcards (page 98) which warn users when they have re-
dundant or unused uses of a record wildcard match.

Calls to memset and memcpy are now unrolled more aggressively and the produced
code is more efficient on x86-64 with added support for 64-bit MOVs. In particular,
setByteArray# and copyByteArray# calls that were not optimized before, now will be.
See #16052.

When loading modules that use UnboxedTuples (page 267) or UnboxedSums (page 268)
into GHC,], it will now automatically enable - fobject-code (page 211) for these modules
and all modules they depend on. Before this change, attempting to load these modules
into the interpreter would just fail, and the only convenient workaround was to enable
-fobject-code (page 211) for all modules. See the GHCi FAQ (page 66) for further
details.

The eventlog now contains events for biographical and retainer profiling. The biograph-
ical profiling events all appear at the end of the eventlog but the sample start event
contains a timestamp of when the census occurred. The retainer profiling events are
emitted using the standard events.

The eventlog now records the cost centre stack on each profiler sample. This enables
the .prof file to be partially reconstructed from the eventlog.

Add new flag - fkeep-going (page 82) which makes the compiler continue as far as it
can despite errors.

Deprecated flag - fwarn-hi-shadowing because it was not implemented correctly, and
appears to be largely unused. This flag will be removed in a later version of GHC.

Windows bindist has been updated to GCC 9.2 and binutils 2.32. These binaries have
been patched to no longer have have the MAX PATHlimit. Windows users should no longer
have any issues with long path names.

Introduce DynFlags plugins, that allow users to modidy the DynFlags that GHC is going
to use when processing a set of files, from plugins. They can be used for applying tiny
configuration changes, registering hooks and much more. See the user guide (page 564)
for more details as well as an example.

Deprecated flag -fmax-pmcheck-iterations in favor of - fmax-pmcheck-models=(n)
(page 91), which uses a completely different mechanism.

GHC now writes .o files atomically, resulting in reduced chances of truncated files when
a build is cancelled or the computer crashes.

This fixes numerous bug reports in Stack and Cabal where GHC was not able to recover
from such situations by itself and users reported having to clean the build directory.

Other file types are not yet written atomically. Users that observe related problems
should report them on GHC issue #14533. This fix is part of the Stack initiative to get
rid of persistent build errors due to non-atomic file writes across the Haskell tooling
ecosystem.

12

Chapter 3. Release notes for version 8.10.1

https://gitlab.haskell.org/ghc/ghc/issues/16052
https://gitlab.haskell.org/ghc/ghc/issues/14533
https://github.com/commercialhaskell/stack/issues/4559
https://github.com/commercialhaskell/stack/issues/4559
https://github.com/commercialhaskell/stack/issues/4559

GHC User’s Guide Documentation, Release 8.10.2

3.2.3 GHC API

GHC'’s runtime linker no longer uses global state. This allows programs that use the
GHC API to safely use multiple GHC sessions in a single process, as long as there are no
native dependencies that rely on global state.

In the process of making GHC’s codebase more modular, many modules have been re-
named to better reflect the different phases of the compiler. See #13009. Programs
that rely on the previous GHC API may use the ghc-api-compat package to make the
transition to the new interface easier. The renaming process is still going on so you
must expect other similar changes in the next major release.

3.2.4 GHCi

Added a command :instances (page 55) to show the class instances available for a type.

Added new debugger commands :disable (page 53) and :enable (page 53) to disable
and re-enable breakpoints.

Improved command name resolution with option !. For example, : k! resolves to : kind!.

3.2.5 Runtime system

The runtime system linker now marks loaded code as non-writable (see #14069) on all
tier-1 platforms. This is necesaary for out-of-the-box compatibility with OpenBSD and
macOS Catalina (see #17353)

The RTS API now exposes an interface (page 151) to configure EventLogWriters, allow-
ing eventlog data to fed to sinks other than .eventlog files.

A new +RTS flag - -disable-delayed-os-memory-return was added to make for accurate
resident memory usage of the program as shown in memory usage reporting tools (e.g.
the RSS column in top and htop).

This makes it easier to check the real memory usage of Haskell programs.
Using this new flag is expected to make the program slightly slower.

Without this flag, the (Linux) RTS returns unused memory “lazily” to the OS. This has
making the memory available to other processes while also allowing the RTS to re-use
the memory very efficiently (without zeroing pages) in case it needs it again, but common
tools will incorrectly show such memory as occupied by the RTS (because they do not
process the LazyFree field in /proc/PID/smaps).

3.2.6 Template Haskell

The Lift typeclass is now levity-polymorphic and has a 1iftTyped method. Previously
disallowed instances for unboxed tuples, unboxed sums, an primitive unboxed types have
also been added. Finally, the code generated by DerivelLift (page 332) has been sim-
plified to take advantage of expression quotations.

Using TupleT 1, TupE [exp], or TupP [pat] will now produce unary tuples (i.e., involv-
ing the Unit type from GHC.Tuple) instead of silently dropping the parentheses. This
brings Template Haskell’s treatment of boxed tuples in line with that of unboxed tuples,
as UnboxedTupleT , " “UnboxedTupE, and UnboxedTupP also produce unary unboxed tu-
ples (i.e., Unit#) when applied to only one argument.

3.2.

Full details 13

https://gitlab.haskell.org/ghc/ghc/issues/13009
https://hackage.haskell.org/package/ghc-api-compat
https://gitlab.haskell.org/ghc/ghc/issues/14069
https://gitlab.haskell.org/ghc/ghc/issues/17353

GHC User’s Guide Documentation, Release 8.10.2

* GHC'’s constraint solver now solves constraints in each top-level group sooner. This has
practical consequences for Template Haskell, as TH splices necessarily separate top-
level groups. For example, the following program would compile in previous versions of
GHC, but not in GHC 8.10:

data T = MkT

tStr :: String
tStr = show MKT

$(return [1)

instance Show T where
show MKT = "MKT"

This is because each top-level group’s constraints are solved before moving on to the
next, and since the top-level group for tStr appears before the top-level group that de-
fines a Show T instance, GHC 8.10 will throw an error about a missing Show T instance in
the expression show MKT. The issue can be fixed by rearranging the order of declarations.
For instance, the following will compile:

data T = MkT

instance Show T where
show MKT = "MKT"

$(return []1)

tStr :: String
tStr = show MKT

» TH splices by default don’t generate warnings anymore. For example, $([d| f ::
Int -> void; f x = case x of {} |]) used to generate a pattern-match exhaustiv-
ity warning, which now it doesn’t. The user can activate warnings for TH splices with
-fenable-th-splice-warnings (page 462). The reason for opt-in is that the offending
code might not have been generated by code the user has control over, for example the
singletons or lens library.

3.2.7 ghc-prim library
* Add new bitReverse# primops that, for a Word of 8, 16, 32 or 64 bits, reverse the order

of its bits e.g. 0b110001 becomes 0b100011. These primitives use optimized machine
instructions when available.

3.2.8 ghc library
3.2.9 base library

3.2.10 Build system

* Countless bug fixes in the new Hadrian build system

* Hadrian now supports a simple key-value configuration language, eliminating the need
for users to use Haskell to define build configuration. This should simplify life for

14 Chapter 3. Release notes for version 8.10.1

GHC User’s Guide Documentation, Release 8.10.2

packagers and users alike. See #16769 and the documentation in hadrian/doc/
user-settings.md.

3.3 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

Package Version Reason for inclusion

ghc 8.10.2 The compiler itself

Cabal 3.2.0.0 Dependency of ghc-pkg util-
ity

Win32 2.6.1.0 Dependency of ghc library

array 0.5.4.0 Dependency of ghc library

base 4.14.1.0 Core library

binary 0.8.8.0 Dependency of ghc library

bytestring 0.10.10.0 Dependency of ghc library

containers 0.6.2.1 Dependency of ghc library

deepseq 1.4.4.0 Dependency of ghc library

directory 1.3.6.0 Dependency of ghc library

exceptions 0.10.4 Dependency of haskeline li-
brary

filepath 1.4.2.1 Dependency of ghc library

ghc-boot-th 8.10.2 Internal compiler library

ghc-boot 8.10.2 Internal compiler library

ghc-compact 0.1.0.0 Core library

ghc-heap 8.10.2 GHC heap-walking library

ghc-prim 0.6.1 Core library

ghci 8.10.2 The REPL interface

continues on next page

3.3. Included libraries 15

https://gitlab.haskell.org/ghc/ghc/issues/16769

GHC User’s Guide Documentation, Release 8.10.2

Table 1 - continued from previous page

Package Version Reason for inclusion

haskeline 0.8.0.1 Dependency of ghci exe-
cutable

hpc 0.6.1.0 Dependency of hpc exe-
cutable

integer-gmp 1.0.3.0 Core library

libiserv 8.10.2 Internal compiler library

mtl 2.2.2 Dependency of Cabal library

parsec 3.1.14.0 Dependency of Cabal library

pretty 1.1.3.6 Dependency of ghc library

process 1.6.9.0 Dependency of ghc library

stm 2.5.0.0 Dependency of haskeline li-
brary

template-haskell 2.16.0.0 Core library

terminfo 0.4.1.4 Dependency of haskeline li-
brary

text 1.2.3.2 Dependency of Cabal library

time 1.9.3 Dependency of ghc library

transformers 0.5.6.2 Dependency of ghc library

unix 2.7.2.2 Dependency of ghc library

xhtml 3000.2.2.1 Dependency of haddock exe-
cutable

16 Chapter 3. Release notes for version 8.10.1

CHAPTER
FOUR

RELEASE NOTES FOR VERSION 8.10.2

The significant changes to the various parts of the compiler are listed in the following sections.

Like previous releases in the 8.10 series, the LLVM backend (page 210) of this release is to be
used with LLVM 9.

4.1 Highlights

* A few important correctness fixes for the low-latency garbage collector. Users of
--nonmoving-gc (page 154) are strongly encouraged to upgrade promptly.

» Fixes a bug in process creation on Windows (#17926).
* Works around a Linux kernel bug in the implementation of timerfds (#18033).

» Fixes a few specialiser regressions (#17810, #18120) as well introduces a variety of
miscellaneous specialiser improvements (#16473, #17930, #17966)

» Fixes a potential loss of sharing due to left operator sections (#18151).
* Fix bootstrapping of GHC with the LLVM backend on x86-64 (#17920).

4.2 Full details

4.2.1 Compiler

» A simplifier panic manifesting when DWARF debug information is enabled has been fixed
(#18162, #17619)

4.2.2 Runtime system

The RTS now supports a flag, --copying-gc (page 154), to counter-act the effect of
--nonmoving-gc (page 154).

The RTS now allows the user to specify a minimum time between idle GCs with the - Iw
(seconds) (page 158) flag. 8.10.1 contained a users guide reference to this flag but did
not include the associated implementation.

* A memory leak in the cost-center profiler has been fixed (#18348)

A potential integer overflow in the compact normal form import logic has been fixed
(#16992)

17

https://gitlab.haskell.org/ghc/ghc/issues/17926
https://gitlab.haskell.org/ghc/ghc/issues/18033
https://gitlab.haskell.org/ghc/ghc/issues/17810
https://gitlab.haskell.org/ghc/ghc/issues/18120
https://gitlab.haskell.org/ghc/ghc/issues/16473
https://gitlab.haskell.org/ghc/ghc/issues/17930
https://gitlab.haskell.org/ghc/ghc/issues/17966
https://gitlab.haskell.org/ghc/ghc/issues/18151
https://gitlab.haskell.org/ghc/ghc/issues/17920
https://gitlab.haskell.org/ghc/ghc/issues/18162
https://gitlab.haskell.org/ghc/ghc/issues/17619
https://gitlab.haskell.org/ghc/ghc/issues/18348
https://gitlab.haskell.org/ghc/ghc/issues/16992

GHC User’s Guide Documentation, Release 8.10.2

* We now workaround a Linux kernel bug in the implementation of timerfd which could
previously result in program crashes (#18033)

* The cost center profiler's JSON output backend now escapes backslashes correctly
(#18438)

» A variety of linker issues on ARM platforms have been fixed.

4.2.3 base library

» Fix a precision issue in the implementation of lLoglmexp (#17125)

4.2.4 Build system

* Fix a bug wherein GHC would link against the non-thread-safe unique supply implemen-
tation when bootstrapping with an unregisterised compiler (#18024)

4.3 Known issues

* A long-standing bug (#16893) which can cause some applications of unsafeCoerce to
segmentation fault is only partially fixed in this release. This release only avoids this
issue in the uses of unsafeCoerceinData.Typeable.Internal, which was the proximate
cause of #16893.

However, it is possible that this bug could manifest in user-code using unsafeCoerce to
perform dynamic type checks. See the ticket for details.

We expect that this issue will be fixed in the next major release of GHC.

4.4 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

Package Version Reason for inclusion

ghc 8.10.2 The compiler itself

Cabal 3.2.0.0 Dependency of ghc-pkg util-
ity

Win32 2.6.1.0 Dependency of ghc library

array 0.5.4.0 Dependency of ghc library

base 4.14.1.0 Core library

binary 0.8.8.0 Dependency of ghc library

continues on next page

18 Chapter 4. Release notes for version 8.10.2

https://gitlab.haskell.org/ghc/ghc/issues/18033
https://gitlab.haskell.org/ghc/ghc/issues/18438
https://gitlab.haskell.org/ghc/ghc/issues/17125
https://gitlab.haskell.org/ghc/ghc/issues/18024
https://gitlab.haskell.org/ghc/ghc/issues/16893
https://gitlab.haskell.org/ghc/ghc/issues/16893
https://gitlab.haskell.org/ghc/ghc/issues/16893

GHC User’s Guide Documentation, Release 8.10.2

Table 1 - continued from previous page

Package Version Reason for inclusion

bytestring 0.10.10.0 Dependency of ghc library

containers 0.6.2.1 Dependency of ghc library

deepseq 1.4.4.0 Dependency of ghc library

directory 1.3.6.0 Dependency of ghc library

exceptions 0.10.4 Dependency of haskeline li-
brary

filepath 1.4.2.1 Dependency of ghc library

ghc-boot-th 8.10.2 Internal compiler library

ghc-boot 8.10.2 Internal compiler library

ghc-compact 0.1.0.0 Core library

ghc-heap 8.10.2 GHC heap-walking library

ghc-prim 0.6.1 Core library

ghci 8.10.2 The REPL interface

haskeline 0.8.0.1 Dependency of ghci exe-
cutable

hpc 0.6.1.0 Dependency of hpc exe-
cutable

integer-gmp 1.0.3.0 Core library

libiserv 8.10.2 Internal compiler library

mtl 2.2.2 Dependency of Cabal library

parsec 3.1.14.0 Dependency of Cabal library

pretty 1.1.3.6 Dependency of ghc library

process 1.6.9.0 Dependency of ghc library

stm 2.5.0.0 Dependency of haskeline li-
brary

template-haskell 2.16.0.0 Core library

continues on next page

4.4. Included libraries

19

GHC User’s Guide Documentation, Release 8.10.2

Table 1 - continued from previous page

Package Version Reason for inclusion

terminfo 0.4.1.4 Dependency of haskeline li-
brary

text 1.2.3.2 Dependency of Cabal library

time 1.9.3 Dependency of ghc library

transformers 0.5.6.2 Dependency of ghc library

unix 2.7.2.2 Dependency of ghc library

xhtml 3000.2.2.1 Dependency of haddock exe-
cutable

20 Chapter 4. Release notes for version 8.10.2

CHAPTER
FIVE

USING GHCI

GHCi' is GHC’s interactive environment, in which Haskell expressions can be interactively
evaluated and programs can be interpreted. If you're familiar with Hugs, then you’ll be right
at home with GHCi. However, GHCi also has support for interactively loading compiled code,
as well as supporting all’ the language extensions that GHC provides. GHCi also includes an
interactive debugger (see The GHCi Debugger (page 38)).

5.1 Introduction to GHCi

Let’s start with an example GHCIi session. You can fire up GHCi with the command ghci:

$ ghci
GHCi, version 8.y.z: https://www.haskell.org/ghc/ :? for help
Prelude>

There may be a short pause while GHCi loads the prelude and standard libraries, after which
the promptis shown. As the banner says, you can type : 7 (page 53) to see the list of commands
available, and a halfline description of each of them. We’ll explain most of these commands as
we go along, and there is complete documentation for all the commands in GHCi commands
(page 49).

Haskell expressions can be typed at the prompt:

Prelude> 1+2

3

Prelude> let x = 42 in x / 9
4.666666666666667

Prelude>

GHC i interprets the whole line as an expression to evaluate. The expression may not span
several lines - as soon as you press enter, GHCi will attempt to evaluate it.

In Haskell, a let expression is followed by in. However, in GHCIi, since the expression can
also be interpreted in the I0 monad, a let binding with no accompanying in statement can
be signalled by an empty line, as in the above example.

Since GHC 8.0.1, you can bind values and functions to names without let statement:

1 The “i” stands for “Interactive”
2 except foreign export, at the moment

21

http://www.haskell.org/hugs/

GHC User’s Guide Documentation, Release 8.10.2

Prelude> x = 42
Prelude> x

42

Prelude>

5.2 Loading source files

Suppose we have the following Haskell source code, which we place in a file Main.hs:

main = print (fac 20)

fac 0
fac n

1
n * fac (n-1)

You can save Main.hs anywhere you like, but if you save it somewhere other than the current
directory® then we will need to change to the right directory in GHCi:

Prelude> :cd dir

where (dir) is the directory (or folder) in which you saved Main.hs.

To load a Haskell source file into GHCi, use the : load (page 54) command:

Prelude> :load Main

Compiling Main (Main.hs, interpreted)
Ok, modules loaded: Main.

*Main>

GHCi has loaded the Main module, and the prompt has changed to *Main> to indicate that the
current context for expressions typed at the prompt is the Main module we just loaded (we’ll
explain what the * means later in What’s really in scope at the prompt? (page 30)). So we
can now type expressions involving the functions from Main.hs:

*Main> fac 17
355687428096000

Loading a multi-module program is just as straightforward; just give the name of the “top-
most” module to the : load (page 54) command (hint: : load (page 54) can be abbreviated to
:1). The topmost module will normally be Main, but it doesn’t have to be. GHCi will discover
which modules are required, directly or indirectly, by the topmost module, and load them all
in dependency order.

-fshow-1loaded-modules
Default off
Since 8.2.2

Typically GHCi will show only the number of modules that it loaded after a :load
(page 54) command. With this flag, GHC will also list the loaded modules’ names. This
was the default behavior prior to GHC 8.2.1 and can be useful for some tooling users.

3 If you started up GHCi from the command line then GHCi’s current directory is the same as the current directory
of the shell from which it was started. If you started GHCi from the “Start” menu in Windows, then the current
directory is probably something like C:\Documents and Settings\user name.

22 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

5.2.1 Modules vs. filenames

Question: How does GHC find the filename which contains module (M)? Answer: it looks for
the file M. hs, or M. lhs. This means that for most modules, the module name must match the
filename. If it doesn’t, GHCi won't be able to find it.

There is one exception to this general rule: when you load a program with : load (page 54),
or specify it when you invoke ghci, you can give a filename rather than a module name. This
filename is loaded if it exists, and it may contain any module you like. This is particularly
convenient if you have several Main modules in the same directory and you can’t call them all
Main.hs.

The search path for finding source files is specified with the - i (page 170) option on the GHCi
command line, like so:

or it can be set using the :set (page 57) command from within GHCi (see Setting GHC
command-line options in GHCi (page 62))*

One consequence of the way that GHCi follows dependencies to find modules to load is that
every module must have a source file. The only exception to the rule is modules that come
from a package, including the Prelude and standard libraries such as I0 and Complex. If you
attempt to load a module for which GHCi can’t find a source file, even if there are object and
interface files for the module, you’ll get an error message.

5.2.2 Making changes and recompilation

If you make some changes to the source code and want GHCi to recompile the program, give
the :reload (page 56) command. The program will be recompiled as necessary, with GHCi
doing its best to avoid actually recompiling modules if their external dependencies haven’t
changed. This is the same mechanism we use to avoid re-compiling modules in the batch
compilation setting (see The recompilation checker (page 174)).

5.3 Loading compiled code

When you load a Haskell source module into GHCi], it is normally converted to byte-code and
run using the interpreter. However, interpreted code can also run alongside compiled code in
GHCi; indeed, normally when GHCIi starts, it loads up a compiled copy of the base package,
which contains the Prelude.

Why should we want to run compiled code? Well, compiled code is roughly 10x faster than
interpreted code, but takes about 2x longer to produce (perhaps longer if optimisation is on).
So it pays to compile the parts of a program that aren’t changing very often, and use the
interpreter for the code being actively developed.

When loading up source modules with : load (page 54), GHCi normally looks for any corre-
sponding compiled object files, and will use one in preference to interpreting the source if
possible. For example, suppose we have a 4-module program consisting of modules A, B, C,
and D. Modules B and C both import D only, and A imports both B and C:

4 Note that in GHCi, and - -make (page 74) mode, the -i (page 170) option is used to specify the search path for

source files, whereas in standard batch-compilation mode the -1 (page 170) option is used to specify the search path
for interface files, see The search path (page 170).

5.3. Loading compiled code 23

GHC User’s Guide Documentation, Release 8.10.2

A
/ N\
B C
\/

D

We can compile D, then load the whole program, like this:

Prelude> :! ghc -c -dynamic D.hs
Prelude> :load A
Compiling B

(interpreted)
Compiling C (
(

S,
s, interpreted)
s, interpreted)
D.o).

Compiling A
0Ok, modules loaded: A, B, C
*Main>

B.h
C.h
A.h
D (

In the messages from the compiler, we see that there is no line for D. This is because it isn’t
necessary to compile D, because the source and everything it depends on is unchanged since
the last compilation.

Note the -dynamic (page 212) flag to GHC: GHCi uses dynamically-linked object code (if you
are on a platform that supports it), and so in order to use compiled code with GHCi it must
be compiled for dynamic linking.

At any time you can use the command : show modules (page 58) to get a list of the modules
currently loaded into GHCi:

*Main> :show modules

D (D.hs, D.o)

C (C.hs, interpreted)
B (B.hs, interpreted)
A (A.hs, interpreted)

*Main>

If we now modify the source of D (or pretend to: using the Unix command touch on the source
file is handy for this), the compiler will no longer be able to use the object file, because it might
be out of date:

*Main> :! touch D.hs

*Main> :reload

Compiling D (D.hs, interpreted)
0Ok, modules loaded: A, B, C, D.

*Main>

Note that module D was compiled, but in this instance because its source hadn’t really
changed, its interface remained the same, and the recompilation checker determined that
A, B and C didn’t need to be recompiled.

So let’s try compiling one of the other modules:

*Main> :! ghc -c C.hs

*Main> :load A

Compiling D (D.hs, interpreted)
Compiling B (B.hs, interpreted)
Compiling C (C.hs, interpreted)
Compiling A (A.hs, interpreted)
0Ok, modules loaded: A, B, C, D.

24 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

We didn’t get the compiled version of C! What happened? Well, in GHCi a compiled module
may only depend on other compiled modules, and in this case C depends on D, which doesn’t
have an object file, so GHCi also rejected C’s object file. Ok, so let’s also compile D:

*Main> :! ghc -c D.hs
*Main> :reload
0Ok, modules loaded: A, B, C, D.

Nothing happened! Here’s another lesson: newly compiled modules aren’t picked up by
:reload (page 56), only : load (page 54):

*Main> :load A

Compiling B (B.hs, interpreted)
Compiling A (A.hs, interpreted)
0Ok, modules loaded: A, B, C (C.o), D (D.o).

The automatic loading of object files can sometimes lead to confusion, because non-exported
top-level definitions of a module are only available for use in expressions at the prompt when
the module is interpreted (see What’s really in scope at the prompt? (page 30)). For this
reason, you might sometimes want to force GHCIi to load a module using the interpreter. This
can be done by prefixing a * to the module name or filename when using : load (page 54), for
example

Prelude> :load *A
Compiling A (A.hs, interpreted)
*A>

When the * is used, GHCi ignores any pre-compiled object code and interprets the module.
If you have already loaded a number of modules as object code and decide that you wanted
to interpret one of them, instead of re-loading the whole set you can use :add *M to specify
that you want M to be interpreted (note that this might cause other modules to be interpreted
too, because compiled modules cannot depend on interpreted ones).

To always compile everything to object code and never use the interpreter, use the
-fobject-code (page 211) option (see Compiling to object code inside GHCi (page 65)).

Hint: Since GHCi will only use a compiled object file if it can be sure that the compiled
version is up-to-date, a good technique when working on a large program is to occasionally
run ghc --make to compile the whole project (say before you go for lunch :-), then continue
working in the interpreter. As you modify code, the changed modules will be interpreted, but
the rest of the project will remain compiled.

5.4 Interactive evaluation at the prompt

When you type an expression at the prompt, GHCiimmediately evaluates and prints the result:

Prelude> reverse "hello"
"olleh"

Prelude> 545

10

5.4. Interactive evaluation at the prompt 25

GHC User’s Guide Documentation, Release 8.10.2

5.4.1 1/0 actions at the prompt

GHCi does more than simple expression evaluation at the prompt. If you enter an expression
of type I0 a for some a, then GHCi executes it as an I0-computation.

Prelude> "hello"

"hello"

Prelude> putStrLn "hello"
hello

This works even if the type of the expression is more general, provided it can be instantiated
to I0 a. For example

Prelude> return True
True

Furthermore, GHCi will print the result of the I/O action if (and only if):
* The result type is an instance of Show.

* The result type is not ().

For example, remembering that putStrLn :: String -> I0 ():
Prelude> putStrLn "hello"

hello

Prelude> do { putStrLn "hello"; return "yes" }

hello

Ilyesll

5.4.2 Using do notation at the prompt

GHCi actually accepts statements rather than just expressions at the prompt. This means you
can bind values and functions to names, and use them in future expressions or statements.

The syntax of a statement accepted at the GHCi prompt is exactly the same as the syntax
of a statement in a Haskell do expression. However, there’s no monad overloading here:
statements typed at the prompt must be in the I0 monad.

Prelude> x <- return 42
Prelude> print x

42

Prelude>

The statement x <- return 42 means “execute return 42 in the I0 monad, and bind the
result to x”. We can then use x in future statements, for example to print it as we did above.

-fprint-bind-result
If -fprint-bind-result (page 26) is set then GHCi will print the result of a statement
if and only if:

* The statement is not a binding, or it is a monadic binding (p <- e) that binds exactly
one variable.

* The variable’s type is not polymorphic, is not (), and is an instance of Show.

Of course, you can also bind normal non-IO expressions using the let-statement:

26 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

Prelude> let x = 42
Prelude> x

42

Prelude>

Another important difference between the two types of binding is that the monadic bind (p
<- e) is strict (it evaluates e), whereas with the let form, the expression isn’t evaluated
immediately:

Prelude> let x = error "help!"
Prelude> print x

*** Exception: help!

Prelude>

Note that let bindings do not automatically print the value bound, unlike monadic bindings.

You can also define functions at the prompt:

Prelude> add a b =a + b
Prelude> add 1 2

3

Prelude>

However, this quickly gets tedious when defining functions with multiple clauses, or groups
of mutually recursive functions, because the complete definition has to be given on a single
line, using explicit semicolons instead of layout:

Prelude> f op n [] =n; fopn (h:t) =h op> fopnt
Prelude> f (+) 0 [1..3]

6

Prelude>

:{
'}
Begin or end a multi-line GHCi command block.

To alleviate this issue, GHCi commands can be split over multiple lines, by wrapping them in
:{ and :} (each on a single line of its own):

Prelude> :{

Prelude| g op n [] =n

Prelude| g op n (h:t) = h "op" gopnt
Prelude| :}

Prelude> g (*) 1 [1..3]

6

Such multiline commands can be used with any GHCi command, and note that the layout rule
is in effect. The main purpose of multiline commands is not to replace module loading but
to make definitions in .ghci-files (see The .ghci and .haskeline files (page 63)) more readable
and maintainable.

Any exceptions raised during the evaluation or execution of the statement are caught and
printed by the GHCi command line interface (for more information on exceptions, see the
module Control.Exception in the libraries documentation.

Every new binding shadows any existing bindings of the same name, including entities that
are in scope in the current module context.

5.4. Interactive evaluation at the prompt 27

../libraries/base-4.14.1.0/Control-Exception.html

GHC User’s Guide Documentation, Release 8.10.2

Warning: Temporary bindings introduced at the prompt only last until the next : load
(page 54) or : reload (page 56) command, at which time they will be simply lost. However,
they do survive a change of context with :module (page 56): the temporary bindings just
move to the new location.

Hint: To get a list of the bindings currently in scope, use the :show bindings (page 58)
command:

Prelude> :show bindings
x :: Int
Prelude>

Hint: If you turn on the +t option, GHCi will show the type of each variable bound by a
statement. For example:

Prelude> :set +t

Prelude> let (x:xs) = [1..]
X :: Integer

xs :: [Integer]

5.4.3 Multiline input

Apart from the : { ... :} syntax for multi-line input mentioned above, GHCi also has a mul-
tiline mode, enabled by :set +m, :set +m in which GHCi detects automatically when the
current statement is unfinished and allows further lines to be added. A multi-line input is
terminated with an empty line. For example:

Prelude> :set +m
Prelude> let x = 42
Prelude|

Further bindings can be added to this let statement, so GHCi indicates that the next line
continues the previous one by changing the prompt. Note that layout is in effect, so to add
more bindings to this let we have to line them up:

Prelude> :set +m
Prelude> let x =
Prelude| y =
Prelude|
Prelude>

42
3

Explicit braces and semicolons can be used instead of layout:

Prelude> do {

Prelude| putStrLn "hello"
Prelude| ;putStrLn "world"
Prelude| }

hello

world

Prelude>

28 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

Note that after the closing brace, GHCi knows that the current statement is finished, so no
empty line is required.

Multiline mode is useful when entering monadic do statements:

Control.Monad.State> flip evalStateT 0 $ do
Control.Monad.State| i <- get
Control.Monad.State| lift $ do
Control.Monad.State| putStrLn "Hello World!"
Control.Monad.State| print i
Control.Monad.State|

"Hello World!"

0

Control.Monad.State>

During a multiline interaction, the user can interrupt and return to the top-level prompt.

Prelude> do

Prelude| putStrLn "Hello, World!"
Prelude| ~C

Prelude>

5.4.4 Type, class and other declarations

At the GHCi prompt you can also enter any top-level Haskell declaration, including data,
type, newtype, class, instance, deriving, and foreign declarations. For example:

Prelude> data T = A | B | C deriving (Eq, Ord, Show, Enum)
Prelude> [A ..]

[A,B,C]

Prelude> :i T

data T=A | B | C -- Defined at <interactive>:2:6
instance Enum T -- Defined at <interactive>:2:45
instance Eq T -- Defined at <interactive>:2:30

instance Ord T -- Defined at <interactive>:2:34
instance Show T -- Defined at <interactive>:2:39

As with ordinary variable bindings, later definitions shadow earlier ones, so you can re-enter
a declaration to fix a problem with it or extend it. But there’s a gotcha: when a new type
declaration shadows an older one, there might be other declarations that refer to the old
type. The thing to remember is that the old type still exists, and these other declarations still
refer to the old type. However, while the old and the new type have the same name, GHCi
will treat them as distinct. For example:

Prelude> data T = A | B

Prelude> let f A = True; f B = False
Prelude> data T=A | B | C
Prelude> f A

<interactive>:2:3:
Couldn't match expected type "main::Interactive.T'
with actual type "T'
In the first argument of “f', namely "A'
In the expression: f A
In an equation for “it': it =f A
Prelude>

5.4. Interactive evaluation at the prompt 29

GHC User’s Guide Documentation, Release 8.10.2

The old, shadowed, version of T is displayed as main: :Interactive.T by GHCi in an attempt
to distinguish it from the new T, which is displayed as simply T.

Class and type-family instance declarations are simply added to the list of available instances,
with one exception. Since you might want to re-define one, a class instance replaces any
earlier instance with an identical head. You aren’t allowed to re-define a type family instance,
since it might not be type safe to do so. Instead, re-define the whole type-family. (See Type
families (page 376).) For example:

Prelude> type family T a b
Prelude> type instance T a b = a
Prelude> let uc :: a -> T a b; uc = id

Prelude> type instance Ta b =1b

<interactive>:3:15: error:
Conflicting family instance declarations:
Tab a -- Defined at <interactive>:3:15
Tab b -- Defined at <interactive>:5:15

-- Darn! We have to re-declare T.

Prelude> type family T a b

-- This is a brand-new T, unrelated to the old one
Prelude> type instance Ta b =0b

Prelude> uc 'a' :: Int

<interactive>:8:1: error:
* Couldn't match type ‘Char’ with ‘Int’
Expected type: Int
Actual type: Ghcil.T Char b0
* In the expression: uc 'a' :: Int
In an equation for ‘it’: it = uc 'a' :: Int

5.4.5 What’s really in scope at the prompt?
When you type an expression at the prompt, what identifiers and types are in scope? GHCi
provides a flexible way to control exactly how the context for an expression is constructed:

* The :load (page 54), :add (page 49), and : reload (page 56) commands (The effect of
:load on what is in scope (page 31)).

* The import declaration (Controlling what is in scope with import (page 32)).

* The :module (page 56) command (Controlling what is in scope with the :module com-
mand (page 32)).

The command :show imports (page 58) will show a summary of which modules contribute
to the top-level scope.

Hint: GHCi will tab-complete names that are in scope; for example, if you run GHCi and
type J<tab> then GHCi will expand it to Just.

30 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

5.4.5.1 The effect of :load on what is in scope

The : load (page 54), :add (page 49), and : reload (page 56) commands (Loading source files
(page 22) and Loading compiled code (page 23)) affect the top-level scope. Let’s start with
the simple cases; when you start GHCi the prompt looks like this:

Prelude>

which indicates that everything from the module Prelude is currently in scope; the visible
identifiers are exactly those that would be visible in a Haskell source file with no import
declarations.

If we now load a file into GHCi, the prompt will change:

Prelude> :load Main.hs
Compiling Main (Main.hs, interpreted)
*Main>

The new prompt is *Main, which indicates that we are typing expressions in the context of
the top-level of the Main module. Everything that is in scope at the top-level in the module
Main we just loaded is also in scope at the prompt (probably including Prelude, as long as
Main doesn’t explicitly hide it).

The syntax in the prompt *module indicates that it is the full top-level scope of (module) that is
contributing to the scope for expressions typed at the prompt. Without the *, just the exports
of the module are visible.

Note: For technical reasons, GHCi can only support the *-form for modules that are in-
terpreted. Compiled modules and package modules can only contribute their exports to the
current scope. To ensure that GHCi loads the interpreted version of a module, add the * when
loading the module, e.g. : load *M.

In general, after a : load (page 54) command, an automatic import is added to the scope for
the most recently loaded “target” module, in a *-form if possible. For example, if you say
:load foo.hs bar.hs and bar.hs contains module Bar, then the scope will be set to *Bar if
Bar is interpreted, orif Bar is compiled it will be set to Prelude Bar (GHCiautomatically adds
Prelude if it isn’t present and there aren’t any *-form modules). These automatically-added
imports can be seen with :show imports (page 58):

Prelude> :load hello.hs

[1 of 1] Compiling Main (hello.hs, interpreted)
0k, modules loaded: Main.

*Main> :show imports

:module +*Main -- added automatically

*Main>

and the automatically-added import is replaced the next time you use : load (page 54), :add
(page 49), or : reload (page 56). It can also be removed by :module (page 56) as with normal
imports.

5.4. Interactive evaluation at the prompt 31

GHC User’s Guide Documentation, Release 8.10.2

5.4.5.2 Controlling what is in scope with import

We are not limited to a single module: GHCi can combine scopes from multiple modules, in
any mixture of * and non-* forms. GHCi combines the scopes from all of these modules to
form the scope that is in effect at the prompt.

To add modules to the scope, use ordinary Haskell import syntax:

Prelude> import System.IO

Prelude System.IO> hPutStrLn stdout "hello\n"
hello

Prelude System.IO>

The full Haskell import syntax is supported, including hiding and as clauses. The prompt
shows the modules that are currently imported, but it omits details about hiding, as, and so
on. To see the full story, use :show imports (page 58):

Prelude> import System.IO

Prelude System.IO> import Data.Map as Map
Prelude System.IO Map> :show imports
import Prelude -- implicit

import System.IO

import Data.Map as Map

Prelude System.IO0 Map>

Note that the Prelude import is marked as implicit. It can be overridden with an explicit
Prelude import, just like in a Haskell module.

With multiple modules in scope, especially multiple *-form modules, it is likely that name
clashes will occur. Haskell specifies that name clashes are only reported when an ambiguous
identifier is used, and GHCi behaves in the same way for expressions typed at the prompt.

5.4.5.3 Controlling what is in scope with the :module command

Another way to manipulate the scope is to use the :module (page 56) command, whose syntax
is this:

:module +|- *modl ... *modn

Using the + form of the module commands adds modules to the current scope, and - removes
them. Without either + or -, the current scope is replaced by the set of modules specified.
Note that if you use this form and leave out Prelude, an implicit Prelude import will be added
automatically.

The :module (page 56) command provides a way to do two things that cannot be done with
ordinary import declarations:

* :module (page 56) supports the * modifier on modules, which opens the full top-level
scope of a module, rather than just its exports.

* Imports can be removed from the context, using the syntax :module -M. The import
syntax is cumulative (as in a Haskell module), so this is the only way to subtract from
the scope.

32 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

5.4.5.4 Qualified names

To make life slightly easier, the GHCi prompt also behaves as if there is an implicit import
qualified declaration for every module in every package, and every module currently loaded
into GHCi. This behaviour can be disabled with the -fno-implicit-import-qualified flag.

5.4.5.5 :module and :load

It might seem that :module (page 56)/import and : load (page 54)/:add (page 49)/: reload
(page 56) do similar things: you can use both to bring a module into scope. However, there
is a very important difference. GHCIi is concerned with two sets of modules:

* The set of modules that are currently loaded. This set is modified by : load (page 54),
:add (page 49) and : reload (page 56), and can be shown with : show modules (page 58).

* The set of modules that are currently in scope at the prompt. This set is modified
by import and :module (page 56), and it is also modified automatically after :load
(page 54), :add (page 49), and : reload (page 56), as described above. The set of mod-
ules in scope can be shown with :show imports (page 58).

You can add a module to the scope (via :module (page 56) or import) only if either (a) it is
loaded, or (b) it is a module from a package that GHCi knows about. Using :module (page 56)
or import to try bring into scope a non-loaded module may result in the message module M
is not loaded.

5.4.6 The :main and :run commands

When a program is compiled and executed, it can use the getArgs function to access the
command-line arguments. However, we cannot simply pass the arguments to the main func-
tion while we are testing in ghci, as the main function doesn’t take its directly.

Instead, we can use the :main (page 55) command. This runs whatever main is in scope, with
any arguments being treated the same as command-line arguments, e.g.:

Prelude> main = System.Environment.getArgs >>= print
Prelude> :main foo bar
["fOO","bar"]

We can also quote arguments which contains characters like spaces, and they are treated like
Haskell strings, or we can just use Haskell list syntax:

Prelude> :main foo "bar baz"
["foo","bar baz"]

Prelude> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other functions can be called, either with the -main-is flag or the :run (page 57)
command:

Prelude> foo putStrLn "foo" >> System.Environment.getArgs >>= print
Prelude> bar = putStrLn "bar" >> System.Environment.getArgs >>= print
Prelude> :set -main-is foo

Prelude> :main foo "bar baz"

foo

["foo","bar baz"]

(continues on next page)

5.4. Interactive evaluation at the prompt 33

GHC User’s Guide Documentation, Release 8.10.2

(continued from previous page)

Prelude> :run bar ["foo", "bar baz"]
bar
["foo","bar baz"]

5.4.7 The it variable

Whenever an expression (or a non-binding statement, to be precise) is typed at the prompt,
GHCi implicitly binds its value to the variable it. For example:

Prelude> 1+2

3

Prelude> it * 2
6

What actually happens is that GHCi typechecks the expression, and if it doesn’t have an I0
type, then it transforms it as follows: an expression e turns into

let it = e;
print it

which is then run as an IO-action.

Hence, the original expression must have a type which is an instance of the Show class, or
GHCi will complain:

Prelude> id

<interactive>:1:0:
No instance for (Show (a -> a))
arising from use of “print' at <interactive>:1:0-1
Possible fix: add an instance declaration for (Show (a -> a))
In the expression: print it
In a 'do' expression: print it

The error message contains some clues as to the transformation happening internally.

If the expression was instead of type I0 a for some a, then it will be bound to the result of
the I0 computation, which is of type a. eg.:

Prelude> Data.Time.getZonedTime
2017-04-10 12:34:56.93213581 UTC
Prelude> print it

2017-04-10 12:34:56.93213581 UTC

The corresponding translation for an I0-typed e is

it <- e

Note that it is shadowed by the new value each time you evaluate a new expression, and the
old value of it is lost.

In order to stop the value it being bound on each command, the flag - fno-it (page 34) can
be set. The it variable can be the source of space leaks due to how shadowed declarations
are handled by GHCi (see Type, class and other declarations (page 29)).

34 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

-fno-it
When this flag is set, the variable it will no longer be set to the result of the previously
evaluated expression.

5.4.8 Type defaulting in GHCi

ExtendedDefaultRules
Since 6.8.1
Allow defaulting to take place for more than just numeric classes.

Consider this GHCi session:

ghci> reverse []

What should GHCi do? Strictly speaking, the program is ambiguous. show (reverse [])
(which is what GHCi computes here) has type Show a => String and how that displays de-
pends on the type a. For example:

ghci> reverse ([] :: String)

ghci> reverse ([] :: [Int])
[1]

However, it is tiresome for the user to have to specify the type, so GHCi extends Haskell’s
type-defaulting rules (Section 4.3.4 of the Haskell 2010 Report) as follows. The standard
rules take each group of constraints (C1 a, C2 a, ..., Cn a) for each type variable a, and
defaults the type variable if

1. The type variable a appears in no other constraints
2. All the classes Ci are standard.
3. At least one of the classes Ci is numeric.

At the GHCi prompt, or with GHC if the ExtendedDefaultRules (page 35) flag is given, the
types are instead resolved with the following method:

Find all the unsolved constraints. Then:

* Find those that are of form (C a) where a is a type variable, and partition those con-
straints into groups that share a common type variable a.

» Keep only the groups in which at least one of the classes is an interactive class (defined
below).

* Now, for each remaining group G, try each type ty from the default-type list in turn; if
setting a = ty would allow the constraints in G to be completely solved. If so, default a
to ty.

* The unit type () and the list type [] are added to the start of the standard list of types
which are tried when doing type defaulting.

Note that any multi-parameter constraints (D a b) or (D [a] Int) do not participate in the
process (either to help or to hinder); but they must of course be soluble once the defaulting
process is complete.

The last point means that, for example, this program:

5.4. Interactive evaluation at the prompt 35

GHC User’s Guide Documentation, Release 8.10.2

main :: I0 ()
main = print def

instance Num ()

def :: (Num a, Enum a) => a
def = toEnum 0

prints () rather than 0 as the type is defaulted to () rather than Integer.

The motivation for the change is that it means I0 a actions default to I0 (), which in turn
means that ghci won’t try to print a result when running them. This is particularly impor-
tant for printf, which has an instance that returns I0 a. However, it is only able to return
undefined (the reason for the instance having this type is so that printf doesn’t require ex-
tensions to the class system), so if the type defaults to Integer then ghci gives an error when
running a printf.

See also I/O actions at the prompt (page 26) for how the monad of a computational expression
defaults to I0 if possible.

5.4.8.1 Interactive classes

The interactive classes (only relevant when ExtendedDefaultRules (page 35) is in effect) are:
any numeric class, Show, Eq, Ord, Foldable or Traversable.

As long as a type variable is constrained by one of these classes, defaulting will occur, as
outlined above.

5.4.8.2 Extended rules around default declarations

Since the rules for defaulting are relaxed under ExtendedDefaultRules (page 35), the rules
for default declarations are also relaxed. According to Section 4.3.4 of the Haskell 2010
Report, a default declaration looks like default (tl, ..., tn) where, for each ti, Num ti
must hold. This is relaxed to say that for each ti, there must exist an interactive class C such
that C ti holds. This means that type constructors can be allowed in these lists. For example,
the following works if you wish your Foldable constraints to default to Maybe but your Num
constraints to still default to Integer or Double:

default (Maybe, Integer, Double)

5.4.9 Using a custom interactive printing function

Since GHC 7.6.1, GHCIi prints the result of expressions typed at the prompt using the function
System.IO.print. Its type signature is Show a => a -> I0 (), and it works by converting
the value to String using show.

This is not ideal in certain cases, like when the output is long, or contains strings with non-
ascii characters.

The -interactive-print (name) (page 36) flag allows to specify any function of type C a =>
a -> I0 (), for some constraint C, as the function for printing evaluated expressions. The
function can reside in any loaded module or any registered package, but only when it resides
in a registered package will it survive a :cd (page 50), :add (page 49), : load (page 54),
:reload (page 56) or, :set (page 57).

36 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

-interactive-print (name)
Set the function used by GHCIi to print evaluation results. Given name must be of type C
a=a -> 10 ().

As an example, suppose we have following special printing module:

module SpecPrinter where
import System.IO

sprint a = putStrLn $ show a ++ "!"

The sprint function adds an exclamation mark at the end of any printed value. Running GHCi
with the command:

ghci -interactive-print=SpecPrinter.sprint SpecPrinter

will start an interactive session where values with be printed using sprint:

*SpecPrinter> [1,2,3]
[1,2,3]!
*SpecPrinter> 42

42!

A custom pretty printing function can be used, for example, to format tree-like and nested
structures in a more readable way.

The -interactive-print (name) (page 36) flag can also be used when running GHC in -e
mode:

5.4.10 Stack Traces in GHCi
[This is an experimental feature enabled by the new - fexternal-interpreter flag that was
introduced in GHC 8.0.1. It is currently not supported on Windows.]

GHCi can use the profiling system to collect stack trace information when running interpreted
code. To gain access to stack traces, start GHCIi like this:

ghci -fexternal-interpreter -prof

This runs the interpreted code in a separate process (see Running the interpreter in a sepa-
rate process (page 65)) and runs it in profiling mode to collect call stack information. Note
that because we’re running the interpreted code in profiling mode, all packages that you
use must be compiled for profiling. The -prof flag to GHCi only works in conjunction with
-fexternal-interpreter.

There are three ways to get access to the current call stack.

* error and undefined automatically attach the current stack to the error message. This
often complements the HasCallStack stack (see HasCallStack (page 512)), so both call
stacks are shown.

* Debug.Trace.traceStackis aversion of Debug.Trace.trace that also prints the current
call stack.

* Functions in the module GHC.Stack can be used to get the current stack and render it.

5.4. Interactive evaluation at the prompt 37

GHC User’s Guide Documentation, Release 8.10.2

You don’t need to use -fprof-auto for interpreted modules, annotations are automatically
added at a granularity fine enough to distinguish individual call sites. However, you won’t
see any call stack information for compiled code unless it was compiled with -fprof-auto or
has explicit SCC annotations (see Inserting cost centres by hand (page 234)).

5.5 The GHCi Debugger

GHCIi contains a simple imperative-style debugger in which you can stop a running computa-
tion in order to examine the values of variables. The debugger is integrated into GHCi, and
is turned on by default: no flags are required to enable the debugging facilities. There is one
major restriction: breakpoints and single-stepping are only available in interpreted modules;
compiled code is invisible to the debugger®.

The debugger provides the following:

* The ability to set a breakpoint on a function definition or expression in the program.
When the function is called, or the expression evaluated, GHCi suspends execution and
returns to the prompt, where you can inspect the values of local variables before contin-
uing with the execution.

* Execution can be single-stepped: the evaluator will suspend execution approximately
after every reduction, allowing local variables to be inspected. This is equivalent to
setting a breakpoint at every point in the program.

» Execution can take place in tracing mode, in which the evaluator remembers each eval-
uation step as it happens, but doesn’t suspend execution until an actual breakpoint is
reached. When this happens, the history of evaluation steps can be inspected.

* Exceptions (e.g. pattern matching failure and error) can be treated as breakpoints, to
help locate the source of an exception in the program.

There is currently no support for obtaining a “stack trace”, but the tracing and history features
provide a useful second-best, which will often be enough to establish the context of an error.
For instance, it is possible to break automatically when an exception is thrown, even if it is
thrown from within compiled code (see Debugging exceptions (page 45)).

5.5.1 Breakpoints and inspecting variables

Let’s use quicksort as a running example. Here’s the code:

gsort [] = []
gsort (a:as) = gsort left ++ [a] ++ gsort right
where (left,right) = (filter (<=a) as, filter (=a) as)

main = print (gsort [8, 4, 6, 3, 1, 23, 11, 18])

First, load the module into GHCi:

Prelude> :1 gsort.hs

[1 of 1] Compiling Main (gsort.hs, interpreted)
0Ok, modules loaded: Main.
*Main>

5 Note that packages only contain compiled code, so debugging a package requires finding its source and loading
that directly.

38 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

Now, let’s set a breakpoint on the right-hand-side of the second equation of gsort:

*Main> :break 2
Breakpoint 0 activated at qsort.hs:2:15-46
*Main>

The command :break 2 sets a breakpoint on line 2 of the most recently-loaded module, in
this case gsort.hs. Specifically, it picks the leftmost complete subexpression on that line
on which to set the breakpoint, which in this case is the expression (gqsort left ++ [a] ++
gsort right).

Now, we run the program:

*Main> main
Stopped at gsort.hs:2:15-46

_result :: [a]
a :: a

left :: [al
right :: [a]

[gsort.hs:2:15-46] *Main>

Execution has stopped at the breakpoint. The prompt has changed to indicate that we are
currently stopped at a breakpoint, and the location: [gsort.hs:2:15-46]. To further clarify
the location, we can use the : list (page 54) command:

[qsort.hs:2:15-46] *Main> :list

1 gsort [] =[]

2 qsort (a:as) = gsort left ++ [a] ++ gsort right

3 where (left,right) = (filter (<=a) as, filter (>a) as)

The : list (page 54) command lists the source code around the current breakpoint. If your
output device supports it, then GHCi will highlight the active subexpression in bold.

GHCi has provided bindings for the free variables® of the expression on which the break-
point was placed (a, left, right), and additionally a binding for the result of the expression
(_result). These variables are just like other variables that you might define in GHCi; you
can use them in expressions that you type at the prompt, you can ask for their types with
:type (page 59), and so on. There is one important difference though: these variables may
only have partial types. For example, if we try to display the value of left:

[gsort.hs:2:15-46] *Main> left

<interactive>:1:0:
Ambiguous type variable "a' in the constraint:
“Show a' arising from a use of “print' at <interactive>:1:0-3
Cannot resolve unknown runtime types: a
Use :print or :force to determine these types

This is because qsort is a polymorphic function, and because GHCi does not carry type infor-
mation at runtime, it cannot determine the runtime types of free variables that involve type
variables. Hence, when you ask to display left at the prompt, GHCi can’t figure out which
instance of Show to use, so it emits the type error above.

Fortunately, the debugger includes a generic printing command, : print (page 56), which can
inspect the actual runtime value of a variable and attempt to reconstruct its type. If we try it
on left:

6 We originally provided bindings for all variables in scope, rather than just the free variables of the expression,
but found that this affected performance considerably, hence the current restriction to just the free variables.

5.5. The GHCi Debugger 39

GHC User’s Guide Documentation, Release 8.10.2

[qsort.hs:2:15-46] *Main> :set -fprint-evld-with-show
[gsort.hs:2:15-46] *Main> :print left
left = (_tl::[a])

This isn’t particularly enlightening. What happened is that left is bound to an unevaluated
computation (a suspension, or thunk), and :print (page 56) does not force any evaluation.
The idea is that :print (page 56) can be used to inspect values at a breakpoint without
any unfortunate side effects. It won’t force any evaluation, which could cause the program
to give a different answer than it would normally, and hence it won’t cause any exceptions
to be raised, infinite loops, or further breakpoints to be triggered (see Nested breakpoints
(page 43)). Rather than forcing thunks, :print (page 56) binds each thunk to a fresh variable
beginning with an underscore, in this case t1.

-fprint-evld-with-show
The flag - fprint-evld-with-show (page 40) instructs :print (page 56) to reuse avail-
able Show instances when possible. This happens only when the contents of the variable
being inspected are completely evaluated.

If we aren’t concerned about preserving the evaluatedness of a variable, we can use : force
(page 53) instead of :print (page 56). The : force (page 53) command behaves exactly like
:print (page 56), except that it forces the evaluation of any thunks it encounters:

[gsort.hs:2:15-46] *Main> :force left
left = [4,0,3,1]

Now, since : force (page 53) has inspected the runtime value of left, it has reconstructed
its type. We can see the results of this type reconstruction:

[gsort.hs:2:15-46] *Main> :show bindings
_result :: [Integer]

a :: Integer

left :: [Integer]

right :: [Integer]

_t1 :: [Integer]

Not only do we now know the type of left, but all the other partial types have also been
resolved. So we can ask for the value of a, for example:

[qsort.hs:2:15-46] *Main> a
8

You might find it useful to use Haskell’s seq function to evaluate individual thunks rather than
evaluating the whole expression with : force (page 53). For example:

[gsort.hs:2:15-46] *Main> :print right
right = (_tl::[Integer])
[qsort.hs:2:15-46] *Main> seq _tl1 ()
()

[gsort.hs:2:15-46] *Main> :print right
right = 23 : (_t2::[Integer])

We evaluated only the t1 thunk, revealing the head of the list, and the tail is another thunk
now bound to t2. The seq function is a little inconvenient to use here, so you might want to
use :def (page 52) to make a nicer interface (left as an exercise for the reader!).

Finally, we can continue the current execution:

40 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

[gsort.hs:2:15-46] *Main> :continue
Stopped at qsort.hs:2:15-46
_result :: [a]

a :: a

left :: [a]

right :: [al

[qsort.hs:2:15-46] *Main>

The execution continued at the point it previously stopped, and has now stopped at the break-
point for a second time.

5.5.1.1 Setting breakpoints

Breakpoints can be set in various ways. Perhaps the easiest way to set a breakpoint is to
name a top-level function:

:break identifier

Where (identifier) names any top-level function in an interpreted module currently loaded into
GHC i (qualified names may be used). The breakpoint will be set on the body of the function,
when it is fully applied but before any pattern matching has taken place.

Breakpoints can also be set by line (and optionally column) number:

:break line

:break line column

:break module line

:break module line column

When a breakpoint is set on a particular line, GHCi sets the breakpoint on the leftmost subex-
pression that begins and ends on that line. If two complete subexpressions start at the same
column, the longest one is picked. If there is no complete subexpression on the line, then the
leftmost expression starting on the line is picked, and failing that the rightmost expression
that partially or completely covers the line.

When a breakpoint is set on a particular line and column, GHCi picks the smallest subexpres-
sion that encloses that location on which to set the breakpoint. Note: GHC considers the TAB
character to have a width of 1, wherever it occurs; in other words it counts characters, rather
than columns. This matches what some editors do, and doesn’t match others. The best advice
is to avoid tab characters in your source code altogether (see -Wtabs (page 95) in Warnings
and sanity-checking (page 84)).

If the module is omitted, then the most recently-loaded module is used.

Not all subexpressions are potential breakpoint locations. Single variables are typically not
considered to be breakpoint locations (unless the variable is the right-hand-side of a function
definition, lambda, or case alternative). The rule of thumb is that all redexes are break-
point locations, together with the bodies of functions, lambdas, case alternatives and binding
statements. There is normally no breakpoint on a let expression, but there will always be
a breakpoint on its body, because we are usually interested in inspecting the values of the
variables bound by the let.

5.5. The GHCi Debugger 41

GHC User’s Guide Documentation, Release 8.10.2

5.5.1.2 Managing breakpoints

The list of breakpoints currently defined can be displayed using : show breaks (page 58):

*Main> :show breaks
[0] Main qgsort.hs:1:11-12 enabled
[1] Main qgsort.hs:2:15-46 enabled

To disable one or several defined breakpoint, use the :disable (page 53) command with one
or several blank separated numbers given in the output from :show breaks (page 58):. To
disable all breakpoints at once, use :disable *.

*Main> :disable 0

*Main> :show breaks

[0] Main gsort.hs:1:11-12 disabled
[1] Main qgsort.hs:2:15-46 enabled

Disabled breakpoints can be (re-)enabled with the :enable (page 53) command. The param-
eters of the :disable (page 53) and :enable (page 53) commands are identical.

To delete a breakpoint, use the :delete (page 53) command with the number given in the
output from :show breaks (page 58):

*Main> :delete 0
*Main> :show breaks
[1] Main qsort.hs:2:15-46 disabled

To delete all breakpoints at once, use :delete *.

5.5.2 Single-stepping

Single-stepping is a great way to visualise the execution of your program, and it is also a
useful tool for identifying the source of a bug. GHCi offers two variants of stepping. Use
:step (page 59) to enable all the breakpoints in the program, and execute until the next
breakpoint is reached. Use :steplocal (page 59) to limit the set of enabled breakpoints to
those in the current top level function. Similarly, use :stepmodule (page 59) to single step
only on breakpoints contained in the current module. For example:

*Main> :step main
Stopped at qsort.hs:5:7-47
_result :: I0 ()

The command :step expr (page 59) begins the evaluation of {expr) in single-stepping mode.
If (expr) is omitted, then it single-steps from the current breakpoint. :steplocal (page 59)
and :stepmodule (page 59) commands work similarly.

The : list (page 54) command is particularly useful when single-stepping, to see where you
currently are:

[qsort.hs:5:7-47] *Main> :list

4

5 main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
6

[qsort.hs:5:7-47] *Main>

In fact, GHCi provides a way to run a command when a breakpoint is hit, so we can make it
automatically do : list (page 54):

42 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

[qsort.hs:5:7-47] *Main> :set stop :list
[qsort.hs:5:7-47] *Main> :step
Stopped at qsort.hs:5:14-46

result :: [Integer]

4
5 main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
6
[

gsort.hs:5:14-46] *Main>

5.5.3 Nested breakpoints

When GHCIi is stopped at a breakpoint, and an expression entered at the prompt triggers a
second breakpoint, the new breakpoint becomes the “current” one, and the old one is saved
on a stack. An arbitrary number of breakpoint contexts can be built up in this way. For
example:

[qsort.hs:2:15-46] *Main> :st qsort [1,3]
Stopped at qsort.hs:(1,0)-(3,55)
_result :: [a]

[gsort.hs:(1,0)-(3,55)] *Main>

While stopped at the breakpoint on line 2 that we set earlier, we started a new evaluation with
:step gsort [1,3]. This new evaluation stopped after one step (at the definition of gsort).
The prompt has changed, now prefixed with .. ., to indicate that there are saved breakpoints
beyond the current one. To see the stack of contexts, use :show context (page 58):

[gsort.hs:(1,0)-(3,55)] *Main> :show context
--> main
Stopped at gsort.hs:2:15-46
--> gsort [1,3]
Stopped at gsort.hs:(1,0)-(3,55)
[gsort.hs:(1,0)-(3,55)] *Main>

To abandon the current evaluation, use :abandon (page 49):

. [gsort.hs:(1,0)-(3,55)] *Main> :abandon
[gsort.hs:2:15-46] *Main> :abandon
*Main>

5.5.4 The _result variable

When stopped at a breakpoint or single-step, GHCi binds the variable result to the value of
the currently active expression. The value of result is presumably not available yet, because
we stopped its evaluation, but it can be forced: if the type is known and showable, then just
entering result at the prompt will show it. However, there’s one caveat to doing this:
evaluating result will be likely to trigger further breakpoints, starting with the breakpoint
we are currently stopped at (if we stopped at a real breakpoint, rather than due to :step
(page 59)). So it will probably be necessary to issue a : continue (page 52) immediately when
evaluating result. Alternatively, you can use : force (page 53) which ignores breakpoints.

5.5. The GHCi Debugger 43

GHC User’s Guide Documentation, Release 8.10.2

5.5.5 Tracing and history

A question that we often want to ask when debugging a program is “how did I get here?”.
Traditional imperative debuggers usually provide some kind of stack-tracing feature that lets
you see the stack of active function calls (sometimes called the “lexical call stack”), describ-
ing a path through the code to the current location. Unfortunately this is hard to provide
in Haskell, because execution proceeds on a demand-driven basis, rather than a depth-first
basis as in strict languages. The “stack” in GHC’s execution engine bears little resemblance
to the lexical call stack. Ideally GHCi would maintain a separate lexical call stack in addition
to the dynamic call stack, and in fact this is exactly what our profiling system does (Profiling
(page 231)), and what some other Haskell debuggers do. For the time being, however, GHCi
doesn’t maintain a lexical call stack (there are some technical challenges to be overcome).
Instead, we provide a way to backtrack from a breakpoint to previous evaluation steps: es-
sentially this is like single-stepping backwards, and should in many cases provide enough
information to answer the “how did I get here?” question.

To use tracing, evaluate an expression with the :trace (page 59) command. For example, if
we set a breakpoint on the base case of gsort:

*Main> :list qsort

1 gsort [] =[]

2 qgsort (a:as) = gsort left ++ [a] ++ gsort right

3 where (left,right) = (filter (<=a) as, filter (>a) as)
4

*Main> :b 1

Breakpoint 1 activated at gsort.hs:1:11-12

*Main>

and then run a small gsort with tracing:

*Main> :trace gsort [3,2,1]
Stopped at qsort.hs:1:11-12
_result :: [a]
[gsort.hs:1:11-12] *Main>

We can now inspect the history of evaluation steps:

[gsort.hs:1:11-12] *Main> :hist
- : qsort.hs:3:24-38

-2 : gsort.hs:3:23-55

-3 : gsort.hs:(1,0)-(3,55)
-4 : gsort.hs:2:15-24

-5 : gsort.hs:2:15-46

-6 : gsort.hs:3:24-38

-7 : gsort.hs:3:23-55

-8 : gsort.hs:(1,0)-(3,55)
-9 : gsort.hs:2:15-24

-10 : gsort.hs:2:15-46

-11 : gsort.hs:3:24-38

-12 : gsort.hs:3:23-55

-13 : gsort.hs:(1,0)-(3,55)
-14 : gsort.hs:2:15-24

-15 : gsort.hs:2:15-46

-16 : gsort.hs:(1,0)-(3,55)
<end of history>

To examine one of the steps in the history, use :back (page 50):

44 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

[gsort.hs:1:11-12] *Main> :back
Logged breakpoint at gsort.hs:3:24-38
_result :: [a]

as :: [a]

a :: a

[-1: gsort.hs:3:24-38] *Main>

Note that the local variables at each step in the history have been preserved, and can be
examined as usual. Also note that the prompt has changed to indicate that we’re currently
examining the first step in the history: -1. The command : forward (page 53) can be used to
traverse forward in the history.

The :trace (page 59) command can be used with or without an expression. When used
without an expression, tracing begins from the current breakpoint, just like : step (page 59).

The history is only available when using : trace (page 59); the reason for this is we found that
logging each breakpoint in the history cuts performance by a factor of 2 or more.

-fghci-hist-size=(n)
Default 50
Modify the depth of the evaluation history tracked by GHCi.

5.5.6 Debugging exceptions

Another common question that comes up when debugging is “where did this exception come
from?”. Exceptions such as those raised by error or head [] have no context information
attached to them. Finding which particular call to head in your program resulted in the
error can be a painstaking process, usually involving Debug.Trace.trace, or compiling with
profiling and using Debug.Trace.traceStack or +RTS -xc (see -xc (page 166)).

The GHCi debugger offers a way to hopefully shed some light on these errors quickly and
without modifying or recompiling the source code. One way would be to set a break-
point on the location in the source code that throws the exception, and then use :trace
(page 59) and :history (page 53) to establish the context. However, head is in a library
and we can’t set a breakpoint on it directly. For this reason, GHCi provides the flags
-fbreak-on-exception (page 46) which causes the evaluator to stop when an exception is
thrown, and - fbreak-on-error (page 46), which works similarly but stops only on uncaught
exceptions. When stopping at an exception, GHCi will act just as it does when a breakpoint
is hit, with the deviation that it will not show you any source code location. Due to this, these
commands are only really useful in conjunction with :trace (page 59), in order to log the
steps leading up to the exception. For example:

*Main> :set -fbreak-on-exception
*Main> :trace gsort ("abc" ++ undefined)
“Stopped at <exception thrown>
_exception :: e

[<exception thrown>] *Main> :hist
- : gsort.hs:3:24-38

-2 : gsort.hs:3:23-55

-3 : gsort.hs:(1,0)-(3,55)

-4 : gsort.hs:2:15-24

-5 : gsort.hs:2:15-46

-6 : gsort.hs:(1,0)-(3,55)

<end of history>

(continues on next page)

5.5. The GHCi Debugger 45

GHC User’s Guide Documentation, Release 8.10.2

(continued from previous page)

[<exception thrown>] *Main> :back
Logged breakpoint at gsort.hs:3:24-38
_result :: [a]

as :: [a]

a :: a

[-1: gsort.hs:3:24-38] *Main> :force as
*** Exception: Prelude.undefined

[-1: gsort.hs:3:24-38] *Main> :print as
as = 'b' : 'c' : (_tl::[Char])

The exception itself is bound to a new variable, exception.

Breaking on exceptions is particularly useful for finding out what your program was doing
when it was in an infinite loop. Just hit Control-C, and examine the history to find out what
was going on.

-fbreak-on-exception
Causes GHCi to halt evaluation and return to the interactive prompt in the event of an
exception. - fbreak-on-exception (page 46) breaks on all exceptions.

-fbreak-on-error
Causes GHCIi to halt evaluation and return to the interactive prompt in the event of an
exception. -fbreak-on-error (page 46) breaks on only those exceptions which would
otherwise be uncaught.

5.5.7 Example: inspecting functions

It is possible to use the debugger to examine function values. When we are at a breakpoint
and a function is in scope, the debugger cannot show you the source code for it; however, it is
possible to get some information by applying it to some arguments and observing the result.

The process is slightly complicated when the binding is polymorphic. We show the process
by means of an example. To keep things simple, we will use the well known map function:

import Prelude hiding (map)

map :: (a->b) -> [a] -> [b]
map f [1 =[]
map f (x:xs) = f x : map f xs

We set a breakpoint on map, and call it.

*Main> :break 5

Breakpoint 0 activated at map.hs:5:15-28
*Main> map Just [1..5]

Stopped at map.hs:(4,0)-(5,12)

_result :: [b]
X :: a
f:ra->b
xs :: [a]

GHCi tells us that, among other bindings, f is in scope. However, its type is not fully known
yet, and thus it is not possible to apply it to any arguments. Nevertheless, observe that the
type of its first argument is the same as the type of x, and its result type is shared with
_result.

46 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

As we demonstrated earlier (Breakpoints and inspecting variables (page 38)), the debugger
has some intelligence built-in to update the type of f whenever the types of x or result are
discovered. So what we do in this scenario is force x a bit, in order to recover both its type
and the argument part of f.

*Main> seq x ()
*Main> :print x
x =1

We can check now that as expected, the type of x has been reconstructed, and with it the type
of f has been too:

*Main> :t x

x :: Integer
*Main> :t f

f :: Integer -> b

From here, we can apply f to any argument of type Integer and observe the results.

*Main> let b = f 10
*Main> :t b
b::b
*Main> b
<interactive>:1:0:
Ambiguous type variable "b' in the constraint:
“Show b' arising from a use of “print' at <interactive>:1:0
*Main> :p b
b= (t2::a)
*Main> seq b ()
()

*Main> :t b

b :: a
*Main> :p b
b = Just 10

*Main> :t b

b :: Maybe Integer

*Main> :t f

f :: Integer -> Maybe Integer

*Main> f 20

Just 20

*Main> map f [1..5]

[Just 1, Just 2, Just 3, Just 4, Just 5]

In the first application of f, we had to do some more type reconstruction in order to recover
the result type of f. But after that, we are free to use f normally.

5.5.8 Limitations

* When stopped at a breakpoint, if you try to evaluate a variable that is already under
evaluation, the second evaluation will hang. The reason is that GHC knows the variable is
under evaluation, so the new evaluation just waits for the result before continuing, but of
course this isn’t going to happen because the first evaluation is stopped at a breakpoint.
Control-C can interrupt the hung evaluation and return to the prompt.

The most common way this can happen is when you’re evaluating a CAF (e.g. main),
stop at a breakpoint, and ask for the value of the CAF at the prompt again.

5.5. The GHCi Debugger a7

GHC User’s Guide Documentation, Release 8.10.2

* Implicit parameters (see Implicit parameters (page 434)) are only available at the scope
of a breakpoint if there is an explicit type signature.

5.6 Invoking GHCi

GHC i is invoked with the command ghci or ghc --interactive. One or more modules or
filenames can also be specified on the command line; this instructs GHCi to load the specified
modules or filenames (and all the modules they depend on), just as if you had said :1load
modules at the GHCi prompt (see GHCi commands (page 49)). For example, to start GHCi
and load the program whose topmost module is in the file Main.hs, we could say:

$ ghci Main.hs

Most of the command-line options accepted by GHC (see Using GHC (page 71)) also make
sense in interactive mode. The ones that don’t make sense are mostly obvious.

-flocal-ghci-history
By default, GHCi keeps global history in ~/.ghc/ghci history or %$APPDATAS/<app>/
ghci history, but you can use current directory, e.g.:

$ ghci -flocal-ghci-history

It will create .ghci-history in current folder where GHCi is launched.

-fghci-leak-check
(Debugging only) When loading new modules with :load, check that any previously
loaded modules have been correctly garbage collected. Emits messages if a leak is de-
tected.

5.6.1 Packages
Most packages (see Using Packages (page 187)) are available without needing to specify any
extra flags at all: they will be automatically loaded the first time they are needed.

For hidden packages, however, you need to request the package be loaded by using the
-package (pkg) (page 188) flag:

$ ghci -package readline
GHCi, version 8.y.z: https://www.haskell.org/ghc/ :? for help

Loading package base ... linking ... done.
Loading package readline-1.0 ... linking ... done.
Prelude>

The following command works to load new packages into a running GHCi:

Prelude> :set -package name

But note that doing this will cause all currently loaded modules to be unloaded, and you’ll be
dumped back into the Prelude.

48 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

5.6.2 Extra libraries

Extra libraries may be specified on the command line using the normal -11ib option. (The
term library here refers to libraries of foreign object code; for using libraries of Haskell source
code, see Modules vs. filenames (page 23).) For example, to load the “m” library:

$ ghci -1m

On systems with . so-style shared libraries, the actual library loaded will the 1iblib.so. GHCi
searches the following places for libraries, in this order:

* Paths specified using the -L (dir) (page 212) command-line option,

* The standard library search path for your system loader, which on some systems may be
overridden by setting the LD LIBRARY PATH environment variable.

* The linker standard library search can also be overriden on some systems using the
LIBRARY_ PATH environment variable. Because of some implementation detail on Win-
dows, setting LIBRARY PATH will also extend the system loader path for any library it
finds. So often setting LIBRARY PATH is enough.

On systems with .dl1l-style shared libraries, the actual library loaded will be 1ib.dl1,
liblib.dll. GHCi also has full support for import libraries, either Microsoft style .1lib,
or GNU GCC style .a and .dll.a libraries. If you have an import library it is advis-
able to always specify the import libary instead of the .d11l. e.g. use -lgcc’ instead of
"7 -1libgcc_s seh-1. Again, GHCi will signal an error if it can’t find the library.

GHCi can also load plain object files (.0 or .0obj depending on your platform) or static archives
(.a) from the command-line. Just add the name the object file or library to the command line.
On Windows GHCi also supports the big-obj format.

Ordering of -1 options matters: a library should be mentioned before the libraries it depends
on (see Options affecting linking (page 212)).

5.7 GHCi commands

GHCi commands all begin with “:” and consist of a single command name followed by zero or
more parameters. The command name may be abbreviated, with ambiguities being resolved
in favour of the more commonly used commands.

:abandon
Abandons the current evaluation (only available when stopped at a breakpoint).

:add[*] (module)
Add (module)(s) to the current target set, and perform a reload. Normally pre-compiled
code for the module will be loaded if available, or otherwise the module will be compiled
to byte-code. Using the * prefix forces the module to be loaded as byte-code.

(module) may be a file path. A “~” symbol at the beginning of (module) will be replaced
by the contents of the environment variable HOME.

:all-types
List all types collected for expressions and (local) bindings currently loaded (while :set
+C (page 61) was active) with their respective source-code span, e.g.

5.7. GHCi commands 49

GHC User’s Guide Documentation, Release 8.10.2

GhciTypes> :all-types

GhciTypes.hs:(38,13)-(38,24): Maybe Id

GhciTypes.hs:(45,10)-(45,29): Outputable SpanInfo
GhciTypes.hs:(45,10)-(45,29): (Rational -> SpanInfo -> SDoc) -> Outputable,
—SpanInfo

:back (n)

Travel back (n) steps in the history. (n) is one if omitted. See Tracing and history
(page 44) for more about GHCi’s debugging facilities. See also: :trace (page 59),
:history (page 53), : forward (page 53).

tbreak [(identifier) | [{(module)] (line) [{column)]]

Set a breakpoint on the specified function or line and column. See Setting breakpoints
(page 41).

tbrowse[!] [[*] (module)]

Displays the identifiers exported by the module {module), which must be either loaded
into GHCi or be a member of a package. If {(module) is omitted, the most recently-loaded
module is used.

Like all other GHCi commands, the output is always displayed in the current GHCi scope
(What’s really in scope at the prompt? (page 30)).

There are two variants of the browse command:

* If the * symbol is placed before the module name, then all the identifiers in scope in
(module) (rather that just its exports) are shown.

The *-form is only available for modules which are interpreted; for compiled mod-
ules (including modules from packages) only the non-* form of : browse (page 50) is
available.

* Data constructors and class methods are usually displayed in the context of their
data type or class declaration. However, if the ! symbol is appended to the command,
thus :browse!, they are listed individually. The !-form also annotates the listing with
comments giving possible imports for each group of entries. Here is an example:

Prelude> :browse! Data.Maybe

-- not currently imported
Data.Maybe.catMaybes :: [Maybe a] -> [a]
Data.Maybe.fromJust :: Maybe a -> a
Data.Maybe.fromMaybe :: a -> Maybe a -> a
Data.Maybe.isJust :: Maybe a -> Bool
Data.Maybe.isNothing :: Maybe a -> Bool
Data.Maybe.listToMaybe :: [a] -> Maybe a
Data.Maybe.mapMaybe :: (a -> Maybe b) -> [a] -> [b]
Data.Maybe.maybeTolList :: Maybe a -> [a]
-- imported via Prelude

Just :: a -> Maybe a

data Maybe a = Nothing | Just a

Nothing :: Maybe a

maybe :: b -> (a -> b) -> Maybe a -> b

This output shows that, in the context of the current session (ie in the scope of
Prelude), the first group of items from Data.Maybe are not in scope (although they
are available in fully qualified form in the GHCIi session - see What’s really in scope
at the prompt? (page 30)), whereas the second group of items are in scope (via
Prelude) and are therefore available either unqualified, or with a Prelude. qualifier.

50

Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

ted (dir)
Changes the current working directory to (dir). A “~” symbol at the beginning of (dir)
will be replaced by the contents of the environment variable HOME. See also the :show
paths (page 59) command for showing the current working directory.

Note: changing directories causes all currently loaded modules to be unloaded. This is
because the search path is usually expressed using relative directories, and changing
the search path in the middle of a session is not supported.

:cmd (expr)
Executes (expr) as a computation of type I0 String, and then executes the resulting
string as a list of GHCi commands. Multiple commands are separated by newlines. The
:cmd (page 51) command is useful with :def (page 52) and :set stop (page 58).

:complete (type) [(n)-1[{(m)] (string-literal)
This command allows to request command completions from GHCi even when inter-
acting over a pipe instead of a proper terminal and is designed for integrating GHCi’s
completion with text editors and IDEs.

When called, :complete (page 51) prints the (n)™ to (m)™ completion candidates for
the partial input (string-literal) for the completion domain denoted by (type). Currently,
only the repl domain is supported which denotes the kind of completion that would be
provided interactively by GHCi at the input prompt.

If omitted, (n) and (m) default to the first or last available completion candidate respec-
tively. If there are less candidates than requested via the range argument, (n) and {(m)
are implicitly capped to the number of available completion candidates.

The output of :complete (page 51) begins with a header line containing three space-
delimited fields:

* An integer denoting the number 1 of printed completions,
* an integer denoting the total number of completions available, and finally

* a string literal denoting a common prefix to be added to the returned completion
candidates.

The header line is followed by (1) lines each containing one completion candidate encoded
as (quoted) string literal. Here are some example invocations showing the various cases:

Prelude> :complete repl 0 ""

0 470 ""

Prelude> :complete repl 5 "import For"

5 21 "import "

"Foreign"

"Foreign.C"

"Foreign.C.Error"

"Foreign.C.String"

"Foreign.C.Types"

Prelude> :complete repl 5-10 "import For"
6 21 "import "

"Foreign.C.Types"

"Foreign.Concurrent"
"Foreign.ForeignPtr"
"Foreign.ForeignPtr.Safe"
"Foreign.ForeignPtr.Unsafe"
"Foreign.Marshal"

Prelude> :complete repl 20- "import For"
2 21 "import "

(continues on next page)

5.7. GHCi commands 51

GHC User’s Guide Documentation, Release 8.10.2

(continued from previous page)

"Foreign.StablePtr"
"Foreign.Storable"

Prelude> :complete repl "map"
33"

Ilmapll

Ilmalel

"mapM_"

Prelude> :complete repl 5-10 "map"
0 3 nn

:continue

Continue the current evaluation, when stopped at a breakpoint.

:ctags [(filename)]

Generates a “tags” file for Vi-style editors (:ctags (page 52)) or Emacs-style editors
(:etags (page 53)). If no filename is specified, the default tags or TAGS is used, respec-
tively. Tags for all the functions, constructors and types in the currently loaded modules
are created. All modules must be interpreted for these commands to work.

rdef[!] (name) (expr)

:def (page 52) is used to define new commands, or macros, in GHCi. The command :def
(name) (expr) defines a new GHCi command :name, implemented by the Haskell ex-
pression (expr), which must have type String -> I0 String. When :name argsistyped
at the prompt, GHCi will run the expression (name args), take the resulting String, and
feed it back into GHCi as a new sequence of commands. Separate commands in the result
must be separated by “\n”.

That’s all a little confusing, so here’s a few examples. To start with, here’s a new GHCi
command which doesn’t take any arguments or produce any results, it just outputs the
current date and time:

Prelude> let date = Data.Time.getZonedTime >>= print >> return ""
Prelude> :def date date

Prelude> :date

2017-04-10 12:34:56.93213581 UTC

Here’s an example of a command that takes an argument. It’s a re-implementation of
:cd (page 50):

Prelude> let mycd d = System.Directory.setCurrentDirectory d >> return ""
Prelude> :def mycd mycd
Prelude> :mycd ..

Or I could define a simple way to invoke “ghc --make Main” in the current directory:

Prelude> :def make (_-> return ":! ghc --make Main")

We can define a command that reads GHCi input from a file. This might be useful for
creating a set of bindings that we want to repeatedly load into the GHCi session:

Prelude> :def . readFile
Prelude> :. cmds.ghci

Notice that we named the command : ., by analogy with the “.” Unix shell command
that does the same thing.

52

Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

Typing :def on its own lists the currently-defined macros. Attempting to redefine an
existing command name results in an error unless the :def! form is used, in which case
the old command with that name is silently overwritten. However for builtin commands
the old command can still be used by preceeding the command name with a double colon
(eg ::load). It’s not possible to redefine the commands : {, :} and :!.

:delete * | (num)
Delete one or more breakpoints by number (use : show breaks (page 58) to see the num-
ber of each breakpoint). The * form deletes all the breakpoints.

:disable * | (num)
Disable one or more breakpoints by number (use :show breaks (page 58) to see the
number and state of each breakpoint). The * form disables all the breakpoints.

:doc (name)
(Experimental: This command will likely change significantly in GHC 8.8.)

Displays the documentation for the given name. Currently the command is restricted to
displaying the documentation directly on the declaration in question, ignoring documen-
tation for arguments, constructors etc.

redit (file)
Opens an editor to edit the file (file), or the most recently loaded module if {file) is omit-
ted. If there were errors during the last loading, the cursor will be positioned at the line
of the first error. The editor to invoke is taken from the EDITOR environment variable,
or a default editor on your system if EDITOR is not set. You can change the editor using
:set editor (page 57).

:enable * | (num)
Enable one or more disabled breakpoints by number (use : show breaks (page 58) to see
the number and state of each breakpoint). The * form enables all the disabled break-
points.

retags
See :ctags (page 52).

:force (identifier)
Prints the value of (identifier) in the same way as :print (page 56). Unlike :print
(page 56), : force (page 53) evaluates each thunk that it encounters while traversing
the value. This may cause exceptions or infinite loops, or further breakpoints (which are
ignored, but displayed).

:forward (n)
Move forward (n) steps in the history. (n) is one if omitted. See Tracing and history
(page 44) for more about GHCi’s debugging facilities. See also: :trace (page 59),
:history (page 53), :back (page 50).

thelp
:?

Displays a list of the available commands.

Repeat the previous command.

thistory [num]
Display the history of evaluation steps. With a number, displays that many steps (default:
20). For use with : trace (page 59); see Tracing and history (page 44). To set the number
of history entries stored by GHCI, use the - fghci-hist-size=(n) (page 45) flag.

5.7. GHCi commands 53

GHC User’s Guide Documentation, Release 8.10.2

:info[!] (name)

Displays information about the given name(s). For example, if (name) is a class, then
the class methods and their types will be printed; if (name) is a type constructor, then
its definition will be printed; if (name) is a function, then its type will be printed. If
(name) has been loaded from a source file, then GHCi will also display the location of its
definition in the source.

For types and classes, GHCi also summarises instances that mention them. To avoid
showing irrelevant information, an instance is shown only if (a) its head mentions (name)},
and (b) all the other things mentioned in the instance are in scope (either qualified or
otherwise) as a result of a : load (page 54) or :module (page 56) commands.

The command :info! works in a similar fashion but it removes restriction (b), showing
all instances that are in scope and mention {(name) in their head.

tissafe [(module)]

Displays Safe Haskell information about the given module (or the current module if omit-
ted). This includes the trust type of the module and its containing package.

tkind[!] (type)

Infers and prints the kind of (type). The latter can be an arbitrary type expression, in-
cluding a partial application of a type constructor, such as Either Int. In fact, :kind
(page 54) even allows you to write a partial application of a type synonym (usually dis-
allowed), so that this works:

ghci> type T a b = (a,b,a)
ghci> :k T Int Bool

T Int Bool :: *

ghci> :k T

T v * > % > X

ghci> :k T Int

T Int :: * -> *

If you specify the optional “!”, GHC will in addition normalise the type by expanding out
type synonyms and evaluating type-function applications, and display the normalised
result.

:list (identifier)

Lists the source code around the definition of (identifier) or the current breakpoint if
not given. This requires that the identifier be defined in an interpreted module. If your
output device supports it, then GHCi will highlight the active subexpression in bold.

:list [(module)] (line)

Lists the source code around the given line number of (module). This requires that the
module be interpreted. If your output device supports it, then GHCi will highlight the
active subexpression in bold.

:load['] [*]{module)

Recursively loads the specified {module)s, and all the modules they depend on. Here,
each (module) must be a module name or filename, but may not be the name of a module
in a package.

All previously loaded modules, except package modules, are forgotten. The new set of
modules is known as the target set. Note that : load (page 54) can be used without any
arguments to unload all the currently loaded modules and bindings.

Normally pre-compiled code for a module will be loaded if available, or otherwise the
module will be compiled to byte-code. Using the * prefix forces a module to be loaded
as byte-code.

54

Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the “-fdefer-type-errors” flag is set before loading and unset after
loading if the flag has not already been set before. See Deferring type errors to runtime
(page 455) for further motivation and details.

After a : load (page 54) command, the current context is set to:
* {module), if it was loaded successfully, or

* the most recently successfully loaded module, if any other modules were loaded as
a result of the current : load (page 54), or

¢ Prelude otherwise.

:loc-at (module) (line) (col) (end-line) (end-col) [(name)]
Tries to find the definition site of the name at the given source-code span, e.g.:

X> :loc-at X.hs 6 14 6 16 mu
X.hS:(8,7)‘(8,9)

This command is useful when integrating GHCi with text editors and IDEs for providing
a goto-definition facility.

The :loc-at command requires :set +c (page 61) to be set.
:instances (type)
Displays all the class instances available to the argument (type). The command will

match (type) with the first parameter of every instance and then check that all constraints
are satisfiable.

When combined with PartialTypeSignatures (page 449), a user can insert wildcards
into a query and learn the constraints required of each wildcard for (type) match with
an instance.

The output is a listing of all matching instances, simplified and instantiated as much as
possible.

For example:

> :instances Maybe (Maybe Int)

instance Eq (Maybe (Maybe Int)) -- Defined in ‘GHC.Maybe’
instance Ord (Maybe (Maybe Int)) -- Defined in ‘GHC.Maybe’
instance Show (Maybe (Maybe Int)) -- Defined in ‘GHC.Show’
instance Read (Maybe (Maybe Int)) -- Defined in ‘GHC.Read’

> :set -XPartialTypeSignatures -fno-warn-partial-type-signatures

> :instances Maybe
instance Eq _ => Eq (Maybe) -- Defined in ‘GHC.Maybe’

instance Semigroup _ => Monoid (Maybe) -- Defined in ‘GHC.Base’
instance Ord _ => Ord (Maybe) -- Defined in ‘GHC.Maybe’

instance Semigroup _ => Semigroup (Maybe) -- Defined in ‘GHC.Base’
instance Show _ => Show (Maybe) -- Defined in ‘GHC.Show’

instance Read @ => Read (Maybe) -- Defined in ‘GHC.Read’

:main (argl) ... (argn)
When a program is compiled and executed, it can use the getArgs function to access the
command-line arguments. However, we cannot simply pass the arguments to the main
function while we are testing in ghci, as the main function doesn’t take its arguments
directly.

5.7. GHCi commands 55

GHC User’s Guide Documentation, Release 8.10.2

Instead, we can use the :main (page 55) command. This runs whatever main is in scope,
with any arguments being treated the same as command-line arguments, e.g.:

Prelude> main = System.Environment.getArgs >>= print
Prelude> :main foo bar
[IIfOOII,IIbarII]

We can also quote arguments which contains characters like spaces, and they are treated
like Haskell strings, or we can just use Haskell list syntax:

Prelude> :main foo "bar baz"
["foo","bar baz"]

Prelude> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other functions can be called, either with the -main-is flag or the : run (page 57)
command:

Prelude> foo putStrLn "foo" >> System.Environment.getArgs >>= print
Prelude> bar putStrLn "bar" >> System.Environment.getArgs >>= print
Prelude> :set -main-is foo

Prelude> :main foo "bar baz"

foo

["foo","bar baz"]

Prelude> :run bar ["foo", "bar baz"]
bar

["foo","bar baz"]

:module +|- [*](modl)

import (mod)

Sets or modifies the current context for statements typed at the prompt. The form import
mod is equivalent to :module +mod. See What’s really in scope at the prompt? (page 30)
for more details.

:print (names)

Prints a value without forcing its evaluation. :print (page 56) may be used on values
whose types are unknown or partially known, which might be the case for local variables
with polymorphic types at a breakpoint. While inspecting the runtime value, :print
(page 56) attempts to reconstruct the type of the value, and will elaborate the type in
GHCi’s environment if possible. If any unevaluated components (thunks) are encoun-
tered, then :print (page 56) binds a fresh variable with a name beginning with t to
each thunk. See Breakpoints and inspecting variables (page 38) for more information.
See also the :sprint (page 59) command, which works like :print (page 56) but does
not bind new variables.

rquit

Quits GHCi. You can also quit by typing Control-D at the prompt.

:reload[!]

Attempts to reload the current target set (see : load (page 54)) if any of the modules in
the set, or any dependent module, has changed. Note that this may entail loading new
modules, or dropping modules which are no longer indirectly required by the target.

Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the “-fdefer-type-errors” flag is set before loading and unset after
loading if the flag has not already been set before. See Deferring type errors to runtime
(page 455) for further motivation and details.

56

Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

irun
See :main (page 55).

iscript [(n)] (filename)
Executes the lines of a file as a series of GHCi commands. This command is compatible
with multiline statements as set by :set +m (page 61)

:set [(option) ...]
Sets various options. See The :set and :seti commands (page 61) for a list of available
options and Interactive-mode options (page 122) for a list of GHCi-specific flags. The
:set (page 57) command by itself shows which options are currently set. It also lists the
current dynamic flag settings, with GHCi-specific flags listed separately.

:set args (arg)
Sets the list of arguments which are returned when the program calls System.getArgs.

:set editor (cmd)
Sets the command used by :edit (page 53) to {cmd).

:set local-config (source|ignore)
If ignore, ./.ghci files will be ignored (sourcing untrusted local scripts is a security
risk). The default is source. Set this directive in your user .ghci script, i.e. before the
local script would be sourced.

Even when set to ignore, a local script will still be processed if given by -ghci-script
(page 64) on the command line, or sourced via :script (page 57).

:set prog (prog)
Sets the string to be returned when the program calls System.getProgName.

:set prompt (prompt)
Sets the string to be used as the prompt in GHCi. Inside {(prompt), the next sequences
are replaced:

* %s by the names of the modules currently in scope.

* %1 by the line number (as referenced in compiler messages) of the current prompt.
* %d by the date in “Weekday Month Date” format (e.g., “Tue May 26”) .
* %t by the current time in 24-hour HH:MM:SS format.

* %T by the current time in 12-hour HH:MM:SS format.

* %@ by the current time in 12-hour am/pm format.

* %A by the current time in 24-hour HH:MM format.

* %Uu by the username of the current user.

* %w by the current working directory.

* %0 by the operating system.

* %a by the machine architecture.

* %N by the compiler name.

* %V by the compiler version.

* %scall(cmd [args]) by the result of calling cmd args.

* %% by %.

If (prompt) starts with " then it is parsed as a Haskell String; otherwise it is treated as
a literal string.

5.7. GHCi commands 57

GHC User’s Guide Documentation, Release 8.10.2

:set prompt-cont (prompt)

Sets the string to be used as the continuation prompt (used when using the : { (page 27)
command) in GHCi.

:set prompt-function (prompt-function)

Sets the function to be used for the prompt displaying in GHCi. The function should
be of the type [String] -> Int -> IO String. This function is called each time the
prompt is being made. The first argument stands for the names of the modules currently
in scope(the name of the “topmost” module will begin with a *; see What’s really in
scope at the prompt? (page 30) for more information). The second arguments is the line
number (as referenced in compiler messages) of the current prompt.

:set prompt-cont-function (prompt-function)

Sets the function to be used for the continuation prompt (used when using the :{
(page 27) command) displaying in GHCi.

:set stop (num) (cmd)

Set a command to be executed when a breakpoint is hit, or a new item in the history is
selected. The most common use of :set stop (page 58) is to display the source code at
the current location, e.g. :set stop :list.

If a number is given before the command, then the commands are run when the specified
breakpoint (only) is hit. This can be quite useful: for example, :set stop 1 :continue
effectively disables breakpoint 1, by running :continue (page 52) whenever it is hit
In this case GHCi will still emit a message to say the breakpoint was hit. If you don’t
want such a message, you can use the :disable (page 53) command. What’s more, with
cunning use of :def (page 52) and :cmd (page 51) you can use :set stop (page 58) to
implement conditional breakpoints:

*Main> :def cond \expr -> return (":cmd if (" ++ expr ++ ") then return \"\" else,
—return \":continue\"")
*Main> :set stop 0 :cond (x < 3)

Ignoring breakpoints for a specified number of iterations is also possible using similar
techniques.

:seti [(option) ...]

Like :set (page 57), but options set with :seti (page 58) affect only expressions and
commands typed at the prompt, and not modules loaded with : load (page 54) (in con-
trast, options set with :set (page 57) apply everywhere). See Setting options for inter-
active evaluation only (page 62).

Without any arguments, displays the current set of options that are applied to expres-
sions and commands typed at the prompt.

:show bindings

Show the bindings made at the prompt and their types.

:show breaks

List the active breakpoints.

:show context

List the active evaluations that are stopped at breakpoints.

:show imports

Show the imports that are currently in force, as created by import and :module (page 56)
commands.

:show modules

Show the list of modules currently loaded.

58

Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

:show packages
Show the currently active package flags, as well as the list of packages currently loaded.

:show paths
Show the current working directory (as set via : cd (page 50) command), as well as the
list of directories searched for source files (as set by the -i option).

:show language
Show the currently active language flags for source files.

:showi language
Show the currently active language flags for expressions typed at the prompt (see also
:seti (page 58)).

:show [args|prog|prompt|editor|stopl
Displays the specified setting (see :set (page 57)).

isprint (expr)
Prints a value without forcing its evaluation. :sprint (page 59) is similar to :print
(page 56), with the difference that unevaluated subterms are not bound to new variables,
they are simply denoted by .

istep [(expr)]
Enable all breakpoints and begin evaluating an expression in single-stepping mode. In
this mode evaluation will be stopped after every reduction, allowing local variables to
be inspected. If {expr) is not given, evaluation will resume at the last breakpoint. See
Single-stepping (page 42).

:steplocal
Enable only breakpoints in the current top-level binding and resume evaluation at
the last breakpoint. Continuation with :steplocal (page 59) is not possible if this
last breakpoint was hit by an error (-fbreak-on-error (page 46)) or an exception
(-fbreak-on-exception (page 46)).

:stepmodule
Enable only breakpoints in the current module and resume evaluation at the last break-
point.

:trace (expr)
Evaluates the given expression (or from the last breakpoint if no expression is given),
and additionally logs the evaluation steps for later inspection using :history (page 53).
See Tracing and history (page 44).

:type (expression)
Infers and prints the type of (expression), including explicit forall quantifiers for polymor-
phic types. The type reported is the type that would be inferred for a variable assigned
to the expression, but without the monomorphism restriction applied.

*X> :type length
length :: Foldable t => t a -> Int

:type +v (expression)
Infers and prints the type of {(expression), but without fiddling with type variables or class
constraints. This is useful when you are using TypeApplications (page 432) and care
about the distinction between specified type variables (available for type application) and
inferred type variables (not available). This mode sometimes prints constraints (such as
Show Int) that could readily be solved, but solving these constraints may affect the type
variables, so GHC refrains.

5.7. GHCi commands 59

GHC User’s Guide Documentation, Release 8.10.2

*X> :set -fprint-explicit-foralls
*X> :type +v length
length :: forall (t :: * -> *). Foldable t => forall a. t a -> Int

:type +d (expression)
Infers and prints the type of {(expression), defaulting type variables if possible. In this
mode, if the inferred type is constrained by any interactive class (Num, Show, Eq, Ord,
Foldable, or Traversable), the constrained type variable(s) are defaulted according to
the rules described under ExtendedDefaultRules (page 35). This mode is quite useful
when the inferred type is quite general (such as for foldr) and it may be helpful to see
a more concrete instantiation.

*X> :type +d length
length :: [a] -> Int

:type-at (path) (line) (col) (end-line) (end-col) [{(name)]
Reports the inferred type at the given span/position in the module, e.g.:

*X> :type-at X.hs 6 6 6 7 f
Int -> Int

This command is useful when integrating GHCi with text editors and IDEs for providing
a show-type-under-point facility.

The first parameter (path) must be a file path and not a module name. The type of this
path is dependent on how the module was loaded into GHCi: If the module was loaded
by name, then the path name calculated by GHCi as described in Modules vs. filenames
(page 23) must be used. If the module was loaded with an absolute or a relative path,
then the same path must be specified.

The last string parameter is useful for when the span is out of date, i.e. the file changed
and the code has moved. In which case : type-at (page 60) falls back to a general : type
(page 59) like lookup.

The :type-at (page 60) command requires :set +c (page 61) to be set.

:undef (name)
Undefines the user-defined command (name) (see :def (page 52) above).

:unset (option)
Unsets certain options. See The :set and :seti commands (page 61) for a list of available
options.

:uses (module) (line) (col) (end-line) (end-col) [(name)]
Reports all module-local uses of the thing at the given position in the module, e.g.:

:uses GhciFind.hs 53 66 53 70 name
GhciFind.hs: (46,25)-(46,29)

GhciFind.hs: (47,37)-(47,41)
GhciFind.hs: (53,66)-(53,70)
GhciFind.hs: (57,62)-(57,66)

This command is useful for highlighting and navigating all uses of an identifier in editors
and IDEs.

The :uses (page 60) command requires :set +c (page 61) to be set.

(builtin-command)
Executes the GHCi built-in command (e.g. ::type 3). That is, look up on the list of

60 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

builtin commands, excluding defined macros. See also: :def (page 52).

:! {(command)
Executes the shell command (command).

5.8 The :set and :setli commands

The :set (page 57) command sets two types of options: GHCi options, which begin with “+”,
and “command-line” options, which begin with “-“.

Note: At the moment, the :set (page 57) command doesn’t support any kind of quoting in
its arguments: quotes will not be removed and cannot be used to group words together. For
example, :set -DF00='BAR BAZ' will not do what you expect.

5.8.1 GHCi options

GHCIi options may be set using : set (page 57) and unset using :unset (page 60).
The available GHCi options are:

iset +c
Collect type and location information after loading modules. The commands :all-types
(page 49), : loc-at (page 55), : type-at (page 60), and : uses (page 60) require +c to be
active.

:set +m
Enable parsing of multiline commands. A multiline command is prompted for when the
current input line contains open layout contexts (see Multiline input (page 28)).

iset +r
Normally, any evaluation of top-level expressions (otherwise known as CAFs or Constant
Applicative Forms) in loaded modules is retained between evaluations. Turning on +r
causes all evaluation of top-level expressions to be discarded after each evaluation (they
are still retained during a single evaluation).

This option may help if the evaluated top-level expressions are consuming large amounts
of space, or if you need repeatable performance measurements.

iset +s
Display some stats after evaluating each expression, including the elapsed time and num-
ber of bytes allocated. NOTE: the allocation figure is only accurate to the size of the stor-
age manager’s allocation area, because it is calculated at every GC. Hence, you might
see values of zero if no GC has occurred.

:set +t
Display the type of each variable bound after a statement is entered at the prompt. If the
statement is a single expression, then the only variable binding will be for the variable
it.

5.8. The :set and :seti commands 61

GHC User’s Guide Documentation, Release 8.10.2

5.8.2 Setting GHC command-line options in GHCi

Normal GHC command-line options may also be set using :set (page 57). For example, to
turn on -Wmissing-signatures (page 93), you would say:

Prelude> :set -Wmissing-signatures

Any GHC command-line option that is designated as dynamic (see the table in Flag reference
(page 115)), may be set using :set (page 57). To unset an option, you can set the reverse
option:

Prelude> :set -Wno-incomplete-patterns -XNoMultiParamTypeClasses

Flag reference (page 115) lists the reverse for each option where applicable.

Certain static options (-package (pkg) (page 188), -I(dir) (page 207), -i(dir)[:(dir)]*
(page 170), and -1 (lib) (page 212) in particular) will also work, but some may not take
effect until the next reload.

5.8.3 Setting options for interactive evaluation only

GHCIi actually maintains two sets of options:
* The loading options apply when loading modules

» The interactive options apply when evaluating expressions and commands typed at the
GHCi prompt.

The :set (page 57) command modifies both, but there is also a :seti (page 58) command
(for “set interactive”) that affects only the interactive options set.

It is often useful to change the interactive options, without having that option apply to loaded
modules too. For example

:seti -XMonoLocalBinds

It would be undesirable if MonoLocalBinds (page 431) were to apply to loaded modules too:
that might cause a compilation error, but more commonly it will cause extra recompilation,
because GHC will think that it needs to recompile the module because the flags have changed.

If you are setting language options in your . ghci file, it is good practice to use : seti (page 58)
rather than :set (page 57), unless you really do want them to apply to all modules you load
in GHCi.

The two sets of options can be inspected using the :set (page 57) and :seti (page 58) com-
mands respectively, with no arguments. For example, in a clean GHCi session we might see
something like this:

Prelude> :seti

base language is: Haskell2010

with the following modifiers:
-XNoMonomorphismRestriction
-XNoDatatypeContexts
-XNondecreasingIndentation
-XExtendedDefaultRules

GHCi-specific dynamic flag settings:

other dynamic, non-language, flag settings:

(continues on next page)

62 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

(continued from previous page)

-fimplicit-import-qualified
warning settings:

The two sets of options are initialised as follows. First, both sets of options are initialised
as described in The .ghci and .haskeline files (page 63). Then the interactive options are
modified as follows:

* The option -XExtendedDefaultRules is enabled, in order to apply special defaulting
rules to expressions typed at the prompt (see Type defaulting in GHCi (page 35)).

* The Monomorphism Restriction is disabled (see Switching off the dreaded Monomor-
phism Restriction (page 430)).

5.9 The .ghci and .haskeline files

5.9.1 The .ghci files

When it starts, unless the - ignore-dot-ghci (page 64) flag is given, GHCi reads and executes
commands from the following files, in this order, if they exist:

1. ghcappdata/ghci.conf, where (ghcappdata) depends on your system, but is usually
something like $HOME/ .ghc on Unix or C: /Documents and Settings/user/Application
Data/ghc on Windows.

2. $HOME/ .ghci
3. ./.ghci

The ghci.conf file is most useful for turning on favourite options (e.g. :set +s), and defining
useful macros.

Note: When setting language options in this file it is usually desirable to use : seti (page 58)
rather than :set (page 57) (see Setting options for interactive evaluation only (page 62)).

Placing a .ghci file in a directory with a Haskell project is a useful way to set certain project-
wide options so you don’t have to type them every time you start GHCi: eg. if your project
uses multi-parameter type classes, scoped type variables, and CPP, and has source files in
three subdirectories A, B and C, you might put the following lines in .ghci:

:set -XMultiParamTypeClasses -XScopedTypeVariables -cpp
:set -iA:B:C

(Note that strictly speaking the -1 (page 170) flag is a static one, but in fact it works to set it
using :set (page 57) like this. The changes won’t take effect until the next : load (page 54),
though.)

Warning: Sourcing untrusted ./.ghci files is a security risk. They can contain arbitrary
commands that will be executed as the user. Use :set local-config (page 57) to inhibit
the processing of ./.ghci files.

Once you have a library of GHCi macros, you may want to source them from separate files,
or you may want to source your .ghci file into your running GHCi session while debugging it

5.9. The .ghci and .haskeline files 63

GHC User’s Guide Documentation, Release 8.10.2

:def source readFile

With this macro defined in your . ghci file, you can use :source filetoread GHCi commands
from file. You can find (and contribute!-) other suggestions for .ghci files on this Haskell
wiki page: GHC/GHCi

Additionally, any files specified with -ghci-script (page 64) flags will be read after the stan-
dard files, allowing the use of custom .ghci files.

Two command-line options control whether the startup files files are read:

-ignore-dot-ghci
Don’t read either ./.ghci or the other startup files when starting up.

-ghci-script
Read a specific file after the usual startup files. May be specified repeatedly for multiple
inputs. -ignore-dot-ghci (page 64) does not apply to these files.

When defining GHCi macros, there is some important behavior you should be aware of when
names may conflict with built-in commands, especially regarding tab completion.

For example, consider if you had a macro named :time and in the shell, typed :t 3 — what
should happen? The current algorithm we use for completing commands is:

1. First, look up an exact match on the name from the defined macros.
2. Look for the exact match on the name in the built-in command list.

3. Do a prefix lookup on the list of built-in commands - if a built-in command matches, but
a macro is defined with the same name as the built-in defined, pick the macro.

4. Do a prefix lookup on the list of built-in commands.
5. Do a prefix lookup on the list of defined macros.
Here are some examples:

1. You have a macro :time and enter :t 3
You get :type 3

2. You have a macro :type and enter :t 3
You get :type 3 with your defined macro, not the builtin.

3. You have a macro :time and a macro :type, and enter :t 3
You get :type 3 with your defined macro.

When giving priority to built-in commands, you can use :: (builtin-command) (page 60),
like ::type 3.

5.9.2 The .haskeline file

GHCi uses Haskeline under the hood. You can configure it to, among other things, prune
duplicates from GHCi history. See: Haskeline user preferences.

64 Chapter 5. Using GHCi

http://haskell.org/haskellwiki/GHC/GHCi
https://hackage.haskell.org/package/haskeline
https://github.com/judah/haskeline/wiki/UserPreferences

GHC User’s Guide Documentation, Release 8.10.2

5.10 Compiling to object code inside GHCi

By default, GHCi compiles Haskell source code into byte-code that is interpreted by the run-
time system. GHCi can also compile Haskell code to object code: to turn on this feature, use
the - fobject-code (page 211) flag either on the command line or with :set (page 57) (the
option - fbyte-code (page 211) restores byte-code compilation again). Compiling to object
code takes longer, but typically the code will execute 10-20 times faster than byte-code.

Compiling to object code inside GHCIi is particularly useful if you are developing a compiled
application, because the : reload (page 56) command typically runs much faster than restart-
ing GHC with --make (page 74) from the command-line, because all the interface files are
already cached in memory.

There are disadvantages to compiling to object-code: you can’t set breakpoints in object-code
modules, for example. Only the exports of an object-code module will be visible in GHCi,
rather than all top-level bindings as in interpreted modules.

5.11 Running the interpreter in a separate process

Normally GHCi runs the interpreted code in the same process as GHC itself, on top of the same
RTS and sharing the same heap. However, if the flag - fexternal-interpreter (page 65) is
given, then GHC will spawn a separate process for running interpreted code, and communi-
cate with it using messages over a pipe.

-fexternal-interpreter
Since 8.0.1

Run interpreted code (for GHCi, Template Haskell, Quasi-quoting, or Annotations) in a
separate process. The interpreter will run in profiling mode if -prof (page 235) is in
effect, and in dynamically-linked mode if -dynamic (page 212) is in effect.

There are a couple of caveats that will hopefully be removed in the future: this option
is currently not implemented on Windows (it is a no-op), and the external interpreter
does not support the GHCi debugger, so breakpoints and single-stepping don’t work
with - fexternal-interpreter (page 65).

See also the -pgmi (cmd) (page 206) (Replacing the program for one or more phases
(page 205)) and -opti (option) (page 206) (Forcing options to a particular phase
(page 206)) flags.

Why might we want to do this? The main reason is that the RTS running the interpreted code
can be a different flavour (profiling or dynamically-linked) from GHC itself. So for example:

* We can use the profiler to collect stack traces when using GHCi (see Stack Traces in
GHCi (page 37)).

* When compiling Template Haskell code with -prof (page 235) we don’t need to compile
the modules without -prof (page 235) first (see Using Template Haskell with Profiling
(page 465)) because we can run the profiled object code in the interpreter.

This feature is experimental in GHC 8.0.x, but it may become the default in future releases.

5.10. Compiling to object code inside GHCi 65

GHC User’s Guide Documentation, Release 8.10.2

5.12 Running the interpreter on a different host

When using the flag - fexternal-interpreter (page 65) GHC will spawn and communicate
with the separate process using pipes. There are scenarios (e.g. when cross compiling)
where it is favourable to have the communication happen over the network. GHC provides
two utilities for this, which can be found in the utils directory.

* remote-iserv needs to be built with the cross compiler to be executed on the remote
host. Or in the case of using it on the same host the stage2 compiler will do as well.

* iserv-proxy needs to be built on the build machine by the build compiler.

After starting remote-iserv (tmp dir) (port) on the target and providing it with a tempo-
rary folder (where it will copy the necessary libraries to load to) and port it will listen for the
proxy to connect.

Providing -pgmi /path/to/iserv-proxy (page 206), -pgmo (option) and -pgmo (port) in
addition to -fexternal-interpreter (page 65) will then make ghc go through the proxy
instead.

There are some limitations when using this. File and process IO will be executed on the target.
As such packages like git-embed, file-embed and others might not behave as expected if the
target and host do not share the same filesystem.

5.13 FAQ and Things To Watch Out For

The interpreter can’t load modules with foreign export declarations! Unfortunately
not. We haven’t implemented it yet. Please compile any offending modules by hand
before loading them into GHCi.

-0 (page 100) doesn’t work with GHCi!

For technical reasons, the bytecode compiler doesn’t interact well with one of the
optimisation passes, so we have disabled optimisation when using the interpreter.
This isn’t a great loss: you’ll get a much bigger win by compiling the bits of your
code that need to go fast, rather than interpreting them with optimisation turned
on.

Modules using unboxed tuples or sums will automatically enable - fobject-code (page 211)

The bytecode interpreter doesn’t support most uses of unboxed tuples or sums, so
GHCi will automatically compile these modules, and all modules they depend on, to
object code instead of bytecode.

GHCi checks for the presence of unboxed tuples and sums in a somewhat con-
servative fashion: it simply checks to see if a module enables the UnboxedTuples
(page 267) or UnboxedSums (page 268) language extensions. It is not always the case
that code which enables UnboxedTuples (page 267) or UnboxedSums (page 268) re-
quires - fobject-code (page 211), so if you really want to compile UnboxedTuples
(page 267)/UnboxedSums (page 268)-using code to bytecode, you can do so explicitly
by enabling the - fbyte-code (page 211) flag. If you do this, do note that bytecode
interpreter will throw an error if it encounters unboxed tuple/sum-related code that
it cannot handle.

Incidentally, the previous point, that -0 (page 100) is incompatible with GHCi, is
because the bytecode compiler can’t deal with unboxed tuples or sums.

66 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.2

Concurrent threads don’t carry on running when GHCIi is waiting for input. This
should work, as long as your GHCi was built with the -threaded (page 214) switch,
which is the default. Consult whoever supplied your GHCi installation.

After using getContents, I can’t use stdin, until I do :load or :reload This is the de-
fined behaviour of getContents: it puts the stdin Handle in a state known as semi-closed,
wherein any further I/O operations on it are forbidden. Because I/O state is retained be-
tween computations, the semi-closed state persists until the next :load (page 54) or
:reload (page 56) command.

You can make stdin reset itself after every evaluation by giving GHCi the command :set
+r. This works because stdin is just a top-level expression that can be reverted to its
unevaluated state in the same way as any other top-level expression (CAF).

I can’t use Control-C to interrupt computations in GHCi on Windows. See Running
GHCi on Windows (page 579).

The default buffering mode is different in GHCi to GHC. In GHC, the stdout handle is
line-buffered by default. However, in GHCi we turn off the buffering on stdout, because
this is normally what you want in an interpreter: output appears as it is generated.

If you want line-buffered behaviour, as in GHC, you can start your program thus:

main = do { hSetBuffering stdout LineBuffering; ... }

5.13. FAQ and Things To Watch Out For 67

GHC User’s Guide Documentation, Release 8.10.2

68 Chapter 5. Using GHCi

CHAPTER
SIX

USING RUNGHC

runghc allows you to run Haskell programs without first having to compile them.

6.1 Usage

The runghc command-line looks like:

’runghc [runghc flags] [GHC flags] module [program args]

Any flags not recognized by runghc are automatically passed to GHC. If a flag is recognized
by both runghc and GHC but you want to pass it to GHC then you can place it after a --
separator. Flags after the separator are treated as GHC only flags. Alternatively you can use
the runghc option - -ghc-arg=<arg> to pass any flag or argument directly to GHC.

module could be a Haskell source filename with or without the extension. If for some reason
the filename starts with a - you can use a second - - to indicate the end of flags. Anything
following a second - - will be considered a program file or module name followed by its argu-
ments. For example:

* runghc -- -- -hello.hs

6.2 runghc flags

runghc accepts the following flags:

* -f /path/to/ghc: tell runghc the path of GHC executable to use to run the program.
By default runghc will search for GHC in the directories in the system search path.

* --ghc-arg=<arg>: Pass an option or argument to GHC
* --help: print usage information.

e --version: print version information.

69

GHC User’s Guide Documentation, Release 8.10.2

6.3 GHC Flags

As discussed earlier, use -- or --ghc-arg=<arg> to disambiguate GHC flags when needed.
For example, - f is recognized by runghc, therefore to pass -fliberate-case to GHC use any
of the following:

* runghc -- -fliberate-case
* runghc --ghc-arg=-fliberate-case

Note that any non-flag arguments are never passed to GHC. An unused non-flag argument
will be considered as the name of the program to run. If a GHC flag takes an argument use
--ghc-arg=<arg> to pass the argument to GHC. For example, if you want to pass -package
foo to GHC use any of the following:

* runghc -package --ghc-arg=foo Main.hs

* runghc --ghc-arg=-package --ghc-arg=foo Main.hs

70 Chapter 6. Using runghc

CHAPTER
SEVEN

USING GHC

7.1 Using GHC

7.1.1 Getting started: compiling programs

In this chapter you’ll find a complete reference to the GHC command-line syntax, including
all 400+ flags. It’s a large and complex system, and there are lots of details, so it can be quite
hard to figure out how to get started. With that in mind, this introductory section provides
a quick introduction to the basic usage of GHC for compiling a Haskell program, before the
following sections dive into the full syntax.

Let’s create a Hello World program, and compile and run it. First, create a file hello.hs
containing the Haskell code:

’main = putStrLn "Hello, World!"

To compile the program, use GHC like this:

’$ ghc hello.hs

(where $ represents the prompt: don’t type it). GHC will compile the source file hello.
hs, producing an object file hello.o and an interface file hello.hi, and then it will link the
object file to the libraries that come with GHC to produce an executable called hello on
Unix/Linux/Mac, or hello.exe on Windows.

By default GHC will be very quiet about what it is doing, only printing error messages. If
you want to see in more detail what’s going on behind the scenes, add -v (page 78) to the
command line.

Then we can run the program like this:

$./hello
Hello World!

If your program contains multiple modules, then you only need to tell GHC the name of the
source file containing the Main module, and GHC will examine the import declarations to
find the other modules that make up the program and find their source files. This means that,
with the exception of the Main module, every source file should be named after the module
name that it contains (with dots replaced by directory separators). For example, the module
Data.Person would be in the file Data/Person.hs on Unix/Linux/Mac, or Data\Person.hs on
Windows.

71

GHC User’s Guide Documentation, Release 8.10.2

7.1.2 Options overview

GHC'’s behaviour is controlled by options, which for historical reasons are also sometimes
referred to as command-line flags or arguments. Options can be specified in three ways:

7.1.2.1 Command-line arguments

An invocation of GHC takes the following form:

ghc [argument...]

Command-line arguments are either options or file names.

Command-line options begin with -. They may not be grouped: -vO0 is different from -v -0.
Options need not precede filenames: e.g., ghc *.0 -o foo. All options are processed and
then applied to all files; you cannot, for example, invoke ghc -c¢ -01 Foo.hs -02 Bar.hs to
apply different optimisation levels to the files Foo.hs and Bar.hs.

Note: Note that command-line options are order-dependent, with arguments being evalu-
ated from left-to-right. This can have seemingly strange effects in the presence of flag im-
plication. For instance, consider - fno-specialise (page 109) and -01 (page 100) (which
implies - fspecialise (page 109)). These two command lines mean very different things:

-fno-specialise -01
-fspecialise will be enabled as the -fno-specialise is overriden by the -01.
-01 -fno-specialise

-fspecialise will not be enabled, since the -fno-specialise overrides the
-fspecialise implied by -01.

7.1.2.2 Command line options in source files

Sometimes it is useful to make the connection between a source file and the command-line
options it requires quite tight. For instance, if a Haskell source file deliberately uses name
shadowing, it should be compiled with the -Wno-name-shadowing option. Rather than main-
taining the list of per-file options in a Makefile, it is possible to do this directly in the source
file using the OPTIONS GHC pragma (page 485)

{-# OPTIONS GHC -Wno-name-shadowing #-}
module X where

OPTIONS GHC is a file-header pragma (see OPTIONS GHC pragma (page 485)).
Only dynamic flags can be used in an OPTIONS GHC pragma (see Dynamic and Mode options
(page 73)).

Note that your command shell does not get to the source file options, they are just included
literally in the array of command-line arguments the compiler maintains internally, so you’ll
be desperately disappointed if you try to glob etc. inside OPTIONS GHC.

72 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.2

Note: The contents of OPTIONS GHC are appended to the command-line options, so options
given in the source file override those given on the command-line.

It is not recommended to move all the contents of your Makefiles into your source files, but in
some circumstances, the OPTIONS GHC pragma is the Right Thing. (If you use -keep-hc-file
(page 172) and have OPTION flags in your module, the OPTIONS GHC will get put into the
generated . hc file).

7.1.2.3 Setting options in GHCi

Options may also be modified from within GHCi, using the :set (page 57) command.

7.1.3 Dynamic and Mode options

Each of GHC’s command line options is classified as dynamic or mode:

Mode: A mode may be used on the command line only. You can pass only one mode
flag. For example, - -make (page 74) or -E (page 74). The available modes are listed
in Modes of operation (page 74).

Dynamic: A dynamic flag may be used on the command line, in a OPTIONS GHC
pragma in a source file, or set using : set (page 57) in GHCi.

The flag reference tables (Flag reference (page 115)) lists the status of each flag.

7.1.4 Meaningful file suffixes

File names with “meaningful” suffixes (e.g., . Lhs or .0) cause the “right thing” to happen to
those files.

.hs A Haskell module.

.lhs A “literate Haskell” module.

.hspp A file created by the preprocessor.

.hi A Haskell interface file, probably compiler-generated.

.hie An extended Haskell interface file, produced by the Haskell compiler.

.hc Intermediate C file produced by the Haskell compiler.

.¢ A C file not produced by the Haskell compiler.

.11 An llvm-intermediate-language source file, usually produced by the compiler.
.bc An llvm-intermediate-language bitcode file, usually produced by the compiler.
.S An assembly-language source file, usually produced by the compiler.

.0 An object file, produced by an assembler.

Files with other suffixes (or without suffixes) are passed straight to the linker.

7.1. Using GHC 73

GHC User’s Guide Documentation, Release 8.10.2

7.1.5 Modes of operation

GHC'’s behaviour is firstly controlled by a mode flag. Only one of these flags may be given,
but it does not necessarily need to be the first option on the command-line. For instance,

$ ghc Main.hs --make -o my-application

If no mode flag is present, then GHC will enter --make (page 74) mode (Using ghc --make
(page 75)) if there are any Haskell source files given on the command line, or else it will link
the objects named on the command line to produce an executable.

The available mode flags are:

--interactive
Interactive mode, which is also available as ghci. Interactive mode is described in more
detail in Using GHCi (page 21).

- -make
In this mode, GHC will build a multi-module Haskell program automatically, figuring out
dependencies for itself. If you have a straightforward Haskell program, this is likely to be
much easier, and faster, than using make. Make mode is described in Using ghc --make
(page 75).

This mode is the default if there are any Haskell source files mentioned on the command
line, and in this case the - -make (page 74) option can be omitted.

-e (expr)
Expression-evaluation mode. This is very similar to interactive mode, except that there
is a single expression to evaluate ({expr)) which is given on the command line. See
Expression evaluation mode (page 76) for more details.

-E
Stop after preprocessing (.hspp file)
-C
Stop after generating C (.hc file)
-S
Stop after generating assembly (. s file)
-C
Stop after generating object (.0) file
This is the traditional batch-compiler mode, in which GHC can compile source files one at
a time, or link objects together into an executable. See Batch compiler mode (page 76).
-M

Dependency-generation mode. In this mode, GHC can be used to generate dependency
information suitable for use in a Makefile. See Dependency generation (page 184).

--frontend (module)
Run GHC using the given frontend plugin. See Frontend plugins (page 563) for details.

--mk-d1l
DLL-creation mode (Windows only). See Creating a DLL (page 582).

--help
-?

Cause GHC to spew a long usage message to standard output and then exit.

74 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.2

--show-iface (file)
Read the interface in (file) and dump it as text to stdout. For example ghc --show-iface
M.hi.

- -supported-extensions
--supported-languages
Print the supported language extensions.

--show-options
Print the supported command line options. This flag can be used for autocompletion in
a shell.

--info
Print information about the compiler.

--version
-V
Print a one-line string including GHC’s version number.

--numeric-version
Print GHC’s numeric version number only.

--print-libdir
Print the path to GHC'’s library directory. This is the top of the directory tree containing
GHC'’s libraries, interfaces, and include files (usually something like /usr/local/lib/
ghc-5.04 on Unix). This is the value of $libdir in the package configuration file (see
Packages (page 187)).

7.1.5.1 Using ghc --make

In this mode, GHC will build a multi-module Haskell program by following dependencies from
one or more root modules (usually just Main). For example, if your Main module is in a file
called Main.hs, you could compile and link the program like this:

’ghc --make Main.hs ‘

In fact, GHC enters make mode automatically if there are any Haskell source files on the
command line and no other mode is specified, so in this case we could just type

’ghc Main.hs ‘

Any number of source file names or module names may be specified; GHC will figure out all
the modules in the program by following the imports from these initial modules. It will then
attempt to compile each module which is out of date, and finally, if there is a Main module,
the program will also be linked into an executable.

The main advantages to using ghc --make over traditional Makefiles are:

* GHC doesn’t have to be restarted for each compilation, which means it can cache infor-
mation between compilations. Compiling a multi-module program with ghc --make can
be up to twice as fast as running ghc individually on each source file.

* You don’t have to write a Makefile.

* GHC re-calculates the dependencies each time it is invoked, so the dependencies never
get out of sync with the source.

» Using the -j[(n)] (page 76) flag, you can compile modules in parallel. Specify -j (n) to
compile (n) jobs in parallel. If (n) is omitted, then it defaults to the number of processors.

7.1. Using GHC 75

GHC User’s Guide Documentation, Release 8.10.2

Any of the command-line options described in the rest of this chapter can be used with - -make,
but note that any options you give on the command line will apply to all the source files
compiled, so if you want any options to apply to a single source file only, you’ll need to use an
OPTIONS GHC pragma (see Command line options in source files (page 72)).

If the program needs to be linked with additional objects (say, some auxiliary C code), then
the object files can be given on the command line and GHC will include them when linking
the executable.

For backward compatibility with existing make scripts, when used in combination with -c
(page 74), the linking phase is omitted (same as - -make -no-1link).

Note that GHC can only follow dependencies if it has the source file available, so if your
program includes a module for which there is no source file, even if you have an object and
an interface file for the module, then GHC will complain. The exception to this rule is for
package modules, which may or may not have source files.

The source files for the program don’t all need to be in the same directory; the -1 (page 170)
option can be used to add directories to the search path (see The search path (page 170)).

-il(n)]
Perform compilation in parallel when possible. GHC will use up to (N) threads during
compilation. If N is omitted, then it defaults to the number of processors. Note that
compilation of a module may not begin until its dependencies have been built.

7.1.5.2 Expression evaluation mode

This mode is very similar to interactive mode, except that there is a single expression to
evaluate which is specified on the command line as an argument to the -e option:

ghc -e expr

Haskell source files may be named on the command line, and they will be loaded exactly as
in interactive mode. The expression is evaluated in the context of the loaded modules.

For example, to load and run a Haskell program containing a module Main, we might say:

ghc -e Main.main Main.hs

or we can just use this mode to evaluate expressions in the context of the Prelude:

$ ghc -e "interact (unlines.map reverse.lines)"
hello
olleh

7.1.5.3 Batch compiler mode

In batch mode, GHC will compile one or more source files given on the command line.

The first phase to run is determined by each input-file suffix, and the last phase is determined
by a flag. If no relevant flag is present, then go all the way through to linking. This table
summarises:

76 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.2

Phase of the compilation | Suffix saying “start | Flag saying “stop | (suffix of) output
system here” after” file

literate pre-processor .lhs .hs

C pre-processor (opt.) .hs (with -cpp) -E .hspp

Haskell compiler .hs -C, -S .hc, .s

C compiler (opt.) .hcor .c -S .S

assembler .S -C .0

linker (other) a.out

Thus, a common invocation would be:

ghc -c Foo.hs

to compile the Haskell source file Foo.hs to an object file Foo.o.

Note: What the Haskell compiler proper produces depends on what backend code generator
is used. See GHC Backends (page 203) for more details.

Note: Pre-processing is optional, the -cpp (page 207) flag turns it on. See Options affecting
the C pre-processor (page 207) for more details.

Note: The option -E (page 74) runs just the pre-processing passes of the compiler, dumping
the result in a file.

Note: The option -C (page 74) is only available when GHC is built in unregisterised mode.
See Unregisterised compilation (page 205) for more details.

Overriding the default behaviour for a file

As described above, the way in which a file is processed by GHC depends on its suffix. This
behaviour can be overridden using the -x (suffix) (page 77) option:

-x (suffix)
Causes all files following this option on the command line to be processed as if they had
the suffix (suffix). For example, to compile a Haskell module in the file M.my-hs, use ghc
-C -X hs M.my-hs.

7.1. Using GHC 77

GHC User’s Guide Documentation, Release 8.10.2

7.1.6 Verbosity options

See also the --help, --version, --numeric-version, and --print-libdir modes in Modes
of operation (page 74).

-V
The -v (page 78) option makes GHC verbose: it reports its version number and shows
(on stderr) exactly how it invokes each phase of the compilation system. Moreover, it
passes the -v flag to most phases; each reports its version number (and possibly some
other information).
Please, oh please, use the -v option when reporting bugs! Knowing that you ran the
right bits in the right order is always the first thing we want to verify.

-v(n)

To provide more control over the compiler’s verbosity, the -v flag takes an optional nu-
meric argument. Specifying -v on its own is equivalent to -v3, and the other levels have
the following meanings:

-v0 Disable all non-essential messages (this is the default).

-vl Minimal verbosity: print one line per compilation (this is the default when - -make
(page 74) or --interactive (page 74) is on).

-v2 Print the name of each compilation phase as it is executed. (equivalent to
-dshow-passes (page 221)).

-v3 The same as -v2, except that in addition the full command line (if appropriate) for
each compilation phase is also printed.

-v4 The same as -v3 except that the intermediate program representation after each
compilation phase is also printed (excluding preprocessed and C/assembly files).

-fprint-potential-instances
When GHC can’t find an instance for a class, it displays a short list of some in the in-
stances it knows about. With this flag it prints all the instances it knows about.

-fhide-source-paths
Starting with minimal verbosity (-v1, see -v (page 78)), GHC displays the name, the
source path and the target path of each compiled module. This flag can be used to
reduce GHC'’s output by hiding source paths and target paths.

The following flags control the way in which GHC displays types in error messages and in
GHCi:
-fprint-unicode-syntax

When enabled GHC prints type signatures using the unicode symbols from the
UnicodeSyntax (page 270) extension. For instance,

ghci> :set -fprint-unicode-syntax
ghci> :t +v (>>)
(>>) ® Monad m=Vab. ma—-mb-—-mb

-fprint-explicit-foralls
Using - fprint-explicit-foralls (page 78) makes GHC print explicit forall quantifi-
cation at the top level of a type; normally this is suppressed. For example, in GHCi:

ghci> let f x = x
ghci> :t f
f:ra->a

(continues on next page)

78 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.2

(continued from previous page)

ghci> :set -fprint-explicit-foralls
ghci> :t f
f :: forall a. a -> a

However, regardless of the flag setting, the quantifiers are printed under these circum-
stances:

* For nested foralls, e.g.

ghci> :t GHC.ST.runST
GHC.ST.runST :: (forall s. GHC.ST.ST s a) -> a

If any of the quantified type variables has a kind that mentions a kind variable, e.g.

ghci> :i Data.Type.Equality.sym
Data.Type.Equality.sym ::
forall k (a :: k) (b :: k).
(a Data.Type.Equality.:~: b) -> b Data.Type.Equality.:~: a
-- Defined in Data.Type.Equality

This flag also enables the printing of inferred type variables inside braces. See Inferred
vs. specified type variables (page 432).

-fprint-explicit-kinds
Using - fprint-explicit-kinds (page 79) makes GHC print kind arguments in types,
which are normally suppressed. This can be important when you are using kind poly-
morphism. For example:

ghci> :set -XPolyKinds

ghci> data T a (b :: 1) = MKT

ghci> :t MKT

MKT :: forall k 1 (a :: k) (b :: 1). Tab

ghci> :set -fprint-explicit-kinds

ghci> :t MKT

MKT :: forall k U (a :: k) (b :: 1). T @{k} @l a b
ghci> :set -XNoPolyKinds

ghci> :t MKT

MKT :: T @{*} @* a b

In the output above, observe that T has two kind variables (k and 1) and two type vari-
ables (a and b). Note that k is an inferred variable and 1 is a specified variable (see
Inferred vs. specified type variables (page 432)), so as a result, they are displayed using
slightly different syntax in the type T @{k} @l a b. The application of 1 (with @l) is the
standard syntax for visible type application (see Visible type application (page 432)). The
application of k (with @{k}), however, uses a hypothetical syntax for visible type applica-
tion of inferred type variables. This syntax is not currently exposed to the programmer,
but it is nevertheless displayed when - fprint-explicit-kinds (page 79) is enabled.

-fprint-explicit-coercions
Using -fprint-explicit-coercions (page 79) makes GHC print coercions in types.
When trying to prove the equality between types of different kinds, GHC uses type-level
coercions. Users will rarely need to see these, as they are meant to be internal.

-fprint-axiom-incomps
Using -fprint-axiom-incomps (page 79) tells GHC to display incompatibilities be-
tween closed type families’ equations, whenever they are printed by :info (page 53)
or --show-iface (file) (page 74).

7.1. Using GHC 79

GHC User’s Guide Documentation, Release 8.10.2

ghci> :i Data.Type.Equality.==
type family (==) (a :: k) (b :: k) :: Bool
where
(==) (f a) (g b) = (f ==g) & (a == b)
==) a a = 'True
==) 1 2 = 'False
ghci> :set -fprint-axiom-incomps
ghci> :1i Data.Type.Equality.==
type family (==) (a :: k) (b :: k) :: Bool
where
{- #0 -} (==) (f a) (g b) = (f == g) & (a == D)
{- #1 -} (==) a a = 'True
-- incompatible with: #0
{- #2 -} (==) 1 2 = 'False
-- incompatible with: #1, #0

The equations are numbered starting from 0, and the comment after each equation refers
to all preceding equations it is incompatible with.

-fprint-equality-relations

Using -fprint-equality-relations (page 80) tells GHC to distinguish between its
equality relations when printing. For example, ~ is homogeneous lifted equality (the
kinds of its arguments are the same) while ~~ is heterogeneous lifted equality (the
kinds of its arguments might be different) and ~# is heterogeneous unlifted equal-
ity, the internal equality relation used in GHC'’s solver. Generally, users should not
need to worry about the subtleties here; ~ is probably what you want. Without
-fprint-equality-relations (page 80), GHC prints all of these as ~. See also Equality
constraints (page 415).

-fprint-expanded-synonyms

When enabled, GHC also prints type-synonym-expanded types in type errors. For exam-
ple, with this type synonyms:

type Foo Int
type Bar = Bool
type MyBarST s = ST s Bar

This error message:

Couldn't match type 'Int' with 'Bool'
Expected type: ST s Foo
Actual type: MyBarST s

Becomes this:

Couldn't match type 'Int' with 'Bool’
Expected type: ST s Foo
Actual type: MyBarST s
Type synonyms expanded:
Expected type: ST s Int
Actual type: ST s Bool

-fprint-typechecker-elaboration

When enabled, GHC also prints extra information from the typechecker in warnings. For
example:

80

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.2

main :: I0 ()

main = do
return $ let a = "hello" in a
return ()

This warning message:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying

‘ <- ($) return let a = "hello" in a’
or by using the flag -fno-warn-unused-do-bind

Becomes this:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying
<= (%)
return
let
AbsBinds [] T[]
{Exports: [a <= a
<>]
Exported types: a :: [Char]
[LclId, Str=DmdTypel
Binds: a = "hello"}
in a’
or by using the flag -fno-warn-unused-do-bind

-fdefer-diagnostics
Causes GHC to group diagnostic messages by severity and output them after other mes-
sages when building a multi-module Haskell program. This flag can make diagnostic
messages more visible when used in conjunction with - -make (page 74) and -j[(n)]
(page 76). Otherwise, it can be hard to find the relevant errors or likely to ignore the
warnings when they are mixed with many other messages.

-fdiagnostics-color=(always|auto|never)
Causes GHC to display error messages with colors. To do this, the terminal must have
support for ANSI color codes, or else garbled text will appear. The default value is auto,
which means GHC will make an attempt to detect whether terminal supports colors and
choose accordingly.

The precise color scheme is controlled by the environment variable GHC COLORS (or
GHC COLOURS). This can be set to colon-separated list of key=value pairs. These are
the default settings:

header=:message=1:warning=1;35:error=1;31:fatal=1;31:margin=1;34

Each value is expected to be a Select Graphic Rendition (SGR) substring. The formatting
of each element can inherit from parent elements. For example, if header is left empty,
it will inherit the formatting of message. Alternatively if header is set to 1 (bold), it will
be bolded but still inherits the color of message.

Currently, in the primary message, the following inheritance tree is in place:
* message
- header

* warning

7.1. Using GHC 81

https://en.wikipedia.org/wiki/ANSI_escape_code#graphics

GHC User’s Guide Documentation, Release 8.10.2

* error
* fatal

In the caret diagnostics, there is currently no inheritance at all betweenmargin, warning,
error, and fatal.

The environment variable can also be set to the magical values never or always, which
is equivalent to setting the corresponding -fdiagnostics-color flag but with lower
precedence.

-fdiagnostics-show-caret
Controls whether GHC displays a line of the original source code where the error was
detected. This also affects the associated caret symbol that points at the region of code
at fault. The flag is on by default.

-ferror-spans
Causes GHC to emit the full source span of the syntactic entity relating to an error
message. Normally, GHC emits the source location of the start of the syntactic entity
only.

For example:

’test.hs:3:6: parse error on input “where'

becomes:

’test296.hs:3:6-10: parse error on input “where'

And multi-line spans are possible too:

test.hs:(5,4)-(6,7):
Conflicting definitions for “a'
Bound at: test.hs:5:4
test.hs:6:7
In the binding group for: a, b, a

Note that line numbers start counting at one, but column numbers start at zero. This
choice was made to follow existing convention (i.e. this is how Emacs does it).

-fkeep-going
Since 8.10.1

Causes GHC to continue the compilation if a module has an error. Any reverse depen-
dencies are pruned immediately and the whole compilation is still flagged as an error.
This option has no effect if parallel compilation (-j[(n)] (page 76)) is in use.

-freverse-errors
Causes GHC to output errors in reverse line-number order, so that the errors and warn-
ings that originate later in the file are displayed first.

-H (size)
Set the minimum size of the heap to (size). This option is equivalent to +RTS -Hsize, see
RTS options to control the garbage collector (page 154).

-Rghc-timing

Prints a one-line summary of timing statistics for the GHC run. This option is equivalent
to +RTS -tstderr, see RTS options to control the garbage collector (page 154).

82 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.2

7.1.7 Platform-specific Flags

Some flags only make sense for particular target platforms.

-msse2
(x86 only, added in GHC 7.0.1) Use the SSE2 registers and instruction set to implement
floating point operations when using the native code generator (page 204). This gives
a substantial performance improvement for floating point, but the resulting compiled
code will only run on processors that support SSE2 (Intel Pentium 4 and later, or AMD
Athlon 64 and later). The LLVM backend (page 204) will also use SSE?2 if your processor
supports it but detects this automatically so no flag is required.

SSE?2 is unconditionally used on x86-64 platforms.

-msse4.2
(x86 only, added in GHC 7.4.1) Use the SSE4.2 instruction set to implement some floating
point and bit operations when using the native code generator (page 204). The resulting
compiled code will only run on processors that support SSE4.2 (Intel Core i7 and later).
The LLVM backend (page 204) will also use SSE4.2 if your processor supports it but
detects this automatically so no flag is required.

-mbmi2
(x86 only, added in GHC 7.4.1) Use the BMI2 instruction set to implement some bit op-
erations when using the native code generator (page 204). The resulting compiled code
will only run on processors that support BMI2 (Intel Haswell and newer, AMD Excavator,
Zen and newer).

7.1.8 Miscellaneous flags

Some flags only make sense for a particular use case.

-ghcversion-file (path to ghcversion.h)

When GHC is used to compile C files, GHC adds package include paths and includes
ghcversion.h directly. The compiler will lookup the path for the ghcversion.h file
from the rts package in the package database. In some cases, the compiler’s pack-
age database does not contain the rts package, or one wants to specify a specific
ghcversions.h to be included. This option can be used to specify the path to the
ghcversions.h file to be included. This is primarily intended to be used by GHC’s build
system.

7.1.8.1 Other environment variables

GHC can also be configured using environment variables. Currently the only variable it sup-
ports is GHC_NO_UNICODE, which, when set, disables Unicode output regardless of locale set-
tings. GHC_NO_UNICODE can be set to anything +(event an empty string) to trigger this be-
haviour.

7.1. Using GHC 83

GHC User’s Guide Documentation, Release 8.10.2

7.2 Warnings and sanity-checking

GHC has a number of options that select which types of non-fatal error messages, other-
wise known as warnings, can be generated during compilation. Some options control indi-
vidual warnings and others control collections of warnings. To turn off an individual warning
-W<wflag>, use -Wno-<wflag>. To reverse -Werror, which makes all warnings into errors,
use -Wwarn.

By default, you get a standard set of warnings which are generally likely to indicate bugs in
your program. These are:

» -Woverlapping-patterns (page 94)
-Wwarnings-deprecations (page 87)
-Wdeprecations (page 88)
-Wdeprecated-flags (page 89)
-Wunrecognised-pragmas (page 87)
-Wduplicate-exports (page 90)
-Wderiving-defaults (page 89)
-Woverflowed-literals (page 89)
-Wempty-enumerations (page 89)
-Wmissing-fields (page 92)
-Wmissing-methods (page 93)
-Wwrong-do-bind (page 99)
-Wsimplifiable-class-constraints (page 95)
-Wtyped-holes (page 86)
-Wdeferred-type-errors (page 86)
-Wpartial-type-signatures (page 87)
-Wunsupported-calling-conventions (page 89)
-Wdodgy-foreign-imports (page 89)
-Winline-rule-shadowing (page 99)
-Wunsupported-1lvm-version (page 96)
-Wmissed-extra-shared-1ib (page 96)
-Wtabs (page 95)
-Wunrecognised-warning-flags (page 86)
-Winaccessible-code (page 94)
-Wstar-is-type (page 94)

-Wstar-binder (page 95)
-Wspace-after-bang (page 95)

The following flags are simple ways to select standard “packages” of warnings:

-W
Provides the standard warnings plus

* -Wunused-binds (page 96)

* -Wunused-matches (page 97)

* -Wunused-foralls (page 98)

* -Wunused-imports (page 97)

* -Wincomplete-patterns (page 91)

* -Wdodgy-exports (page 89)

e -Wdodgy-imports (page 89)

* -Wunbanged-strict-patterns (page 99)

-Wall
Turns on all warning options that indicate potentially suspicious code. The warnings
that are not enabled by -Wall (page 84) are

84 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.2

e -Wincomplete-uni-patterns (page 91)

* -Wincomplete-record-updates (page 92)
e -Wmonomorphism-restriction (page 96)

e -Wimplicit-prelude (page 91)

e -Wmissing-local-signatures (page 93)

* -Wmissing-exported-signatures (page 93)
e -Wmissing-export-lists (page 92)

e -Wmissing-import-lists (page 93)

e -Wmissing-home-modules (page 99)

e -Widentities (page 91)

* -Wredundant-constraints (page 90)

* -Wpartial-fields (page 99)

* -Wmissed-specialisations (page 87)

* -Wall-missed-specialisations (page 87)

-Weverything
Turns on every single warning supported by the compiler.

-Wcompat
Turns on warnings that will be enabled by default in the future, but remain off in normal
compilations for the time being. This allows library authors eager to make their code
future compatible to adapt to new features before they even generate warnings.

This currently enables

e -Wmissing-monadfail-instances (page 88)
* -Wsemigroup (page 89)
e -Wnoncanonical-monoid-instances (page 88)
e -Wstar-is-type (page 94)
e -Wcompat-unqualified-imports (page 86)
-Wno-compat
Disables all warnings enabled by -Wcompat (page ??).
-w
Turns off all warnings, including the standard ones and those that -Wall (page 84)
doesn’t enable.
These options control which warnings are considered fatal and cause compilation to abort.

-Werror
Makes any warning into a fatal error. Useful so that you don’t miss warnings when
doing batch compilation. To reverse -Werror and stop treating any warnings as errors
use -Wwarn, or use -Wwarn=<wflag> to stop treating specific warnings as errors.

-Werror=(wflag)
Implies -W<wflag>

Makes a specific warning into a fatal error. The warning will be enabled if it hasn’t been
enabled yet. Can be reversed with -Wwarn=<wflag>.

-Werror=compat has the same effect as -Werror=... for each warning flag in the
-Wcompat (page ??) option group.

-Wwarn
Warnings are treated only as warnings, not as errors. This is the default, but can be
useful to negate a -Werror (page ??) flag.

-Wwarn=(wflag)
Causes a specific warning to be treated as normal warning, not fatal error.

7.2. Warnings and sanity-checking 85

GHC User’s Guide Documentation, Release 8.10.2

Note that it doesn’t fully negate the effects of -Werror=<wflag> - the warning will still
be enabled.

-Wwarn=compat has the same effect as -Wwarn=. .. for each warning flag in the -Wcompat
(page ??) option group.
When a warning is emitted, the specific warning flag which controls it is shown.
-fshow-warning-groups
When showing which flag controls a warning, also show the respective warning group
flag(s) that warning is contained in.
This option is off by default.

The full set of warning options is described below. To turn off any warning, simply give the
corresponding -Wno- ... option on the command line. For backwards compatibility with GHC
versions prior to 8.0, all these warnings can still be controlled with -f(no-)warn-* instead
of -W(no-)*.

-Wunrecognised-warning-flags
Default on
Enables warnings when the compiler encounters a -W. .. flag that is not recognised.

-Wcompat-unqualified-imports
Warns on qualified imports of core library modules which are subject to change in future
GHC releases. Currently the following modules are covered by this warning:

e Data.List due to the future addition of Data.List.singleton and specialisation of
exports to the [] type. See the mailing list for details.

This warning can be addressed by either adding an explicit import list or using a
qualified import.

-Wtyped-holes
Default on

Determines whether the compiler reports typed holes warnings. Has no effect unless
typed holes errors are deferred until runtime. See Typed Holes (page 442) and Deferring
type errors to runtime (page 455)

-Wdeferred-type-errors
Causes a warning to be reported when a type error is deferred until runtime. See De-
ferring type errors to runtime (page 455)

This warning is on by default.
-fdefer-type-errors

Implies -fdefer-typed-holes (page 86), - fdefer-out-of-scope-variables
(page 87)

Defer as many type errors as possible until runtime. At compile time you get a warning
(instead of an error). At runtime, if you use a value that depends on a type error, you
get a runtime error; but you can run any type-correct parts of your code just fine. See
Deferring type errors to runtime (page 455)

-fdefer-typed-holes
Defer typed holes errors (errors about names with a leading underscore (e.g., “ ”, “ foo”,
“ bar”)) until runtime. This will turn the errors produced by typed holes (page 442) into
warnings. Using a value that depends on a typed hole produces a runtime error, the

86 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.2

same as - fdefer-type-errors (page 86) (which implies this option). See Typed Holes
(page 442) and Deferring type errors to runtime (page 455).

Implied by - fdefer-type-errors (page 86). See also -Wtyped-holes (page 86).

-fdefer-out-of-scope-variables
Defer variable out-of-scope errors (errors about names without a leading underscore)
until runtime. This will turn variable-out-of-scope errors into warnings. Using a
value that depends on an out-of-scope variable produces a runtime error, the same as
-fdefer-type-errors (page 86) (which implies this option). See Typed Holes (page 442)
and Deferring type errors to runtime (page 455).

Implied by -fdefer-type-errors (page 86). See also
-Wdeferred-out-of-scope-variables (page 87).

-Wdeferred-out-of-scope-variables
Warn when a deferred out-of-scope variable is encountered.

-Wpartial-type-signatures
Determines whether the compiler reports holes in partial type signatures as warnings.
Has no effect unless PartialTypeSignatures (page 449) is enabled, which controls
whether errors should be generated for holes in types or not. See Partial Type Sig-
natures (page 449).

This warning is on by default.

-fhelpful-errors
When a name or package is not found in scope, make suggestions for the name or pack-
age you might have meant instead.

This option is on by default.

-Wunrecognised-pragmas
Causes a warning to be emitted when a pragma that GHC doesn’t recognise is used. As
well as pragmas that GHC itself uses, GHC also recognises pragmas known to be used
by other tools, e.g. OPTIONS HUGS and DERIVE.

This option is on by default.

-Wmissed-specialisations
Emits a warning if GHC cannot specialise an overloaded function, usually because the
function needs an INLINABLE pragma. Reports when the situation arises during special-
isation of an imported function.

This form is intended to catch cases where an imported function that is marked as
INLINABLE (presumably to enable specialisation) cannot be specialised as it calls other
functions that are themselves not specialised.

Note that this warning will not throw errors if used with -Werror (page ??).
This option is off by default.

-Wall-missed-specialisations
Emits a warning if GHC cannot specialise an overloaded function, usually because the
function needs an INLINABLE pragma. Reports all such situations.

Note that this warning will not throw errors if used with -Werror (page ??).
This option is off by default.

-Wwarnings-deprecations
Causes a warning to be emitted when a module, function or type with a WARNING or

7.2. Warnings and sanity-checking 87

GHC User’s Guide Documentation, Release 8.10.2

DEPRECATED pragma is used. See WARNING and DEPRECATED pragmas (page 486) for
more details on the pragmas.

This option is on by default.

-Wdeprecations
Causes a warning to be emitted when a module, function or type with a WARNING or
DEPRECATED pragma is used. See WARNING and DEPRECATED pragmas (page 486) for
more details on the pragmas. An alias for -Wwarnings-deprecations (page 87).

This option is on by default.

-Wnoncanonical-monad-instances
Warn if noncanonical Applicative or Monad instances declarations are detected.

When this warning is enabled, the following conditions are verified:

In Monad instances declarations warn if any of the following conditions does not hold:
e If return is defined it must be canonical (i.e. return = pure).
e If (>>) is defined it must be canonical (i.e. (>>) = (*>)).

Moreover, in Applicative instance declarations:
e Warn if pure is defined backwards (i.e. pure

e Warn if (*>) is defined backwards (i.e. (*>)

return).
(>>)).

This option is off by default.

-Wnoncanonical-monadfail-instances
Warn if noncanonical Monad or MonadFail instances declarations are detected.

When this warning is enabled, the following conditions are verified:
In Monad instances declarations warn if any of the following conditions does not hold:
» If fail is defined it must be canonical (i.e. fail = Control.Monad.Fail.fail).
Moreover, in MonadFail instance declarations:
e Warn if fail is defined backwards (i.e. fail = Control.Monad.fail).
See also -Wmissing-monadfail-instances (page 88).
This option is off by default.

-Wnoncanonical-monoid-instances
Warn if noncanonical Semigroup or Monoid instances declarations are detected.

When this warning is enabled, the following conditions are verified:
In Monoid instances declarations warn if any of the following conditions does not hold:
e If mappend is defined it must be canonical (i.e. mappend = (Data.Semigroup.<>)).
Moreover, in Semigroup instance declarations:
* Warn if (<>) is defined backwards (i.e. (<>) = mappend).
This warning is off by default. However, it is part of the -Wcompat (page ??) option group.

-Wmissing-monadfail-instances
Warn when a failable pattern is used in a do-block that does not have a MonadFail in-
stance.

See also -Wnoncanonical-monadfail-instances (page 88).

88 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.2

Being part of the -Wcompat (page ??) option group, this warning is off by default, but will
be switched on in a future GHC release, as part of the MonadFail Proposal (MFP).

-Wsemigroup
Warn when definitions are in conflict with the future inclusion of Semigroup into the
standard typeclasses.

1. Instances of Monoid should also be instances of Semigroup

2. The Semigroup operator (<>) will be in Prelude, which clashes with custom local
definitions of such an operator

Being part of the -Wcompat (page ??) option group, this warning is off by default, but will
be switched on in a future GHC release.

-Wdeprecated-flags
Causes a warning to be emitted when a deprecated command-line flag is used.

This option is on by default.

-Wunsupported-calling-conventions
Causes a warning to be emitted for foreign declarations that use unsupported calling
conventions. In particular, if the stdcall calling convention is used on an architecture
other than i386 then it will be treated as ccall.

-Wdodgy-foreign-imports
Causes a warning to be emitted for foreign imports of the following form:

’foreign import "f" f :: FunPtr t ‘

on the grounds that it probably should be

’foreign import "&f" f :: FunPtr t ‘

The first form declares that f is a (pure) C function that takes no arguments and returns
a pointer to a C function with type t, whereas the second form declares that f itself is a
C function with type t. The first declaration is usually a mistake, and one that is hard to
debug because it results in a crash, hence this warning.

-Wdodgy-exports
Causes a warning to be emitted when a datatype T is exported with all constructors, i.e.
T(..), butisitjust a type synonym.

Also causes a warning to be emitted when a module is re-exported, but that module
exports nothing.

-Wdodgy-imports
Causes a warning to be emitted in the following cases:

* When a datatype T is imported with all constructors, i.e. T(..), but has been ex-
ported abstractly, i.e. T.

* When an import statement hides an entity that is not exported.

-Woverflowed-literals
Causes a warning to be emitted if a literal will overflow, e.g. 300 :: Word8.

-Wempty-enumerations
Causes a warning to be emitted if an enumeration is empty, e.g. [5 .. 3].

-Wderiving-defaults
Since 8.10

7.2. Warnings and sanity-checking 89

https://prime.haskell.org/wiki/Libraries/Proposals/MonadFail

GHC User’s Guide Documentation, Release 8.10.2

Causes a warning when both DeriveAnyClass (page 339) and
GeneralizedNewtypeDeriving (page 333) are enabled and no explicit deriving strategy
is in use. For example, this would result a warning:

class C a
newtype T a = MkT a deriving C

-Wduplicate-constraints

Have the compiler warn about duplicate constraints in a type signature. For example

f :: (Eq a, Show a, Eq a) => a -> a

The warning will indicate the duplicated Eq a constraint.

This option is now deprecated in favour of -Wredundant-constraints (page 90).

-Wredundant-constraints

Since 8.0
Have the compiler warn about redundant constraints in a type signature. In particular:

* A redundant constraint within the type signature itself:

f:: (Eq a, Ord @) => a -> a

The warning will indicate the redundant Eq a constraint: it is subsumed by the Ord
a constraint.

* A constraint in the type signature is not used in the code it covers:

f :: Eqa=>a->a ->Bool
f xy = True

The warning will indicate the redundant Eq a constraint: : it is not used by the
definition of f.)

Similar warnings are given for a redundant constraint in an instance declaration.

When turning on, vyou can suppress it on a per-module basis with
-Wno-redundant-constraints (page 90). Occasionally you may specifically want
a function to have a more constrained signature than necessary, perhaps to leave
yourself wiggle-room for changing the implementation without changing the API. In
that case, you can suppress the warning on a per-function basis, using a call in a dead
binding. For example:

f :: EQ a =>a ->a -> Bool
f xy = True
where
= X == X -- Suppress the redundant-constraint warning for (Eq a)

Here the call to (==) makes GHC think that the (Eq a) constraint is needed, so no
warning is issued.

-Wduplicate-exports

Have the compiler warn about duplicate entries in export lists. This is useful information
if you maintain large export lists, and want to avoid the continued export of a definition
after you’ve deleted (one) mention of it in the export list.

This option is on by default.

20

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.2

-Whi-shadowing
Causes the compiler to emit a warning when a module or interface file in the current
directory is shadowing one with the same module name in a library or other directory.

This flag was not implemented correctly and is now deprecated. It will be removed in a
later version of GHC.

-Widentities
Causes the compiler to emit a warning when a Prelude numeric conversion converts
a type T to the same type T; such calls are probably no-ops and can be omitted. The
functions checked for are: toInteger, toRational, fromIntegral, and realToFrac.

-Wimplicit-kind-vars
Have the compiler warn if a kind variable is not explicitly quantified over. For instance,
the following would produce a warning:

’f :: forall (a :: k). Proxy a

This can be fixed by explicitly quantifying over k:

’f :: forall k (a :: k). Proxy a

-Wimplicit-prelude
Have the compiler warn if the Prelude is implicitly imported. This happens unless ei-
ther the Prelude module is explicitly imported with an import ... Prelude ... line, or
this implicit import is disabled (either by NoImplicitPrelude (page 288) or a LANGUAGE
NoImplicitPrelude pragma).

Note that no warning is given for syntax that implicitly refers to the Prelude, even if
NoImplicitPrelude (page 288) would change whether it refers to the Prelude. For ex-
ample, no warning is given when 368 means Prelude.fromInteger (368::Prelude.
Integer) (where Prelude refers to the actual Prelude module, regardless of the imports
of the module being compiled).

This warning is off by default.

-Wincomplete-patterns
The option -Wincomplete-patterns (page 91) warns about places where a pattern-
match might fail at runtime. The function g below will fail when applied to non-empty
lists, so the compiler will emit a warning about this when -Wincomplete-patterns
(page 91) is enabled.

g [1=2

This option isn’t enabled by default because it can be a bit noisy, and it doesn’t always
indicate a bug in the program. However, it’s generally considered good practice to cover
all the cases in your functions, and it is switched on by - (page 84).

-Wincomplete-uni-patterns
The flag -Wincomplete-uni-patterns (page 91) is similar to -Wincomplete-patterns
(page 91), except that it applies only to lambda-expressions and pattern bindings, con-
structs that only allow a single pattern:

h =\[] -> 2
Just k = fy

-fmax-pmcheck-models=(n)
Default 100

7.2. Warnings and sanity-checking 91

GHC User’s Guide Documentation, Release 8.10.2

The pattern match checker works by assigning symbolic values to each pattern. We call
each such assignment a ‘model’. Now, each pattern match clause leads to potentially
multiple splits of that model, encoding different ways for the pattern match to fail. For
example, when matching x against Just 4, we split each incoming matching model into
two uncovered sub-models: One where x is Nothing and one where x is Just y but y is
not 4.

This can be exponential in the arity of the pattern and in the number of guards in some
cases. The - fmax-pmcheck-models=(n) (page 91) limit makes sure we scale polynomi-
ally in the number of patterns, by forgetting refined information gained from a partially
successful match. For the above example, if we had a limit of 1, we would continue
checking the next clause with the original, unrefined model.

-Wincomplete-record-updates

The function f below will fail when applied to Bar, so the compiler will emit a warning
about this when -Wincomplete-record-updates (page 92) is enabled.

data Foo = Foo { x :: Int }
| Bar

f :: Foo -> Foo
f foo = foo { x =6}

This option isn’t enabled by default because it can be very noisy, and it often doesn’t
indicate a bug in the program.

-Wmissing-deriving-strategies

Since 8.8.1

The datatype below derives the Eq typeclass, but doesn’t specify a strategy. When
-Wmissing-deriving-strategies (page 92)is enabled, the compiler will emit a warning
about this.

data Foo a = Foo a
deriving (Eq)

The compiler will warn here that the deriving clause doesn’t specify a strategy. If the
warning is enabled, but DerivingStrategies (page 341) is not enabled, the compiler
will suggest turning on the DerivingStrategies (page 341) extension. This option is
not on by default, having to be turned on manually or with -Weverything (page 85).

-Wmissing-fields

This option is on by default, and warns you whenever the construction of a labelled field
constructor isn’t complete, missing initialisers for one or more fields. While not an error
(the missing fields are initialised with bottoms), it is often an indication of a programmer
error.

-Wmissing-export-lists

Since 8.4.1

This flag warns if you declare a module without declaring an explicit export list. For
example

module M where

p X = X

92

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.2

The -Wmissing-export-1lists (page 92) flag will warn that M does not declare an export
list. Declaring an explicit export list for M enables GHC dead code analysis, prevents
accidental export of names and can ease optimizations like inlining.

-Wmissing-import-lists
This flag warns if you use an unqualified import declaration that does not explicitly list
the entities brought into scope. For example

module M where
import X(f)
import Y
import qualified Z
px=°fxx

The -Wmissing-import-lists (page 93) flag will warn about the import of Y but not X
If module Y is later changed to export (say) f, then the reference to f in M will become
ambiguous. No warning is produced for the import of Z because extending Z’s exports
would be unlikely to produce ambiguity in M.

-Wmissing-methods
This option is on by default, and warns you whenever an instance declaration is missing
one or more methods, and the corresponding class declaration has no default declaration
for them.

The MINIMAL pragma can be used to change which combination of methods will be re-
quired for instances of a particular class. See MINIMAL pragma (page 487).

-Wmissing-signatures
If you would like GHC to check that every top-level function/value has a type signature,
use the -Wmissing-signatures (page 93) option. As part of the warning GHC also re-
ports the inferred type. The option is off by default.

-Wmissing-exported-sigs
This option is now deprecated in favour of -Wmissing-exported-signatures (page 93).

-Wmissing-exported-signatures
If you would like GHC to check that every exported top-level function/value has a type
signature, but not check unexported values, use the -Wmissing-exported-signatures
(page 93) option. This option takes precedence over -Wmissing-signatures (page 93).
As part of the warning GHC also reports the inferred type. The option is off by default.

-Wmissing-local-sigs
This option is now deprecated in favour of -Wmissing-local-signatures (page 93).

-Wmissing-local-signatures
If you use the -Wmissing-local-signatures (page 93) flag GHC will warn you about
any polymorphic local bindings. As part of the warning GHC also reports the inferred
type. The option is off by default.

-Wmissing-pattern-synonym-signatures
If you would like GHC to check that every pattern synonym has a type signature, use
the -Wmissing-pattern-synonym-signatures (page 93) option. If this option is used
in conjunction with -Wmissing-exported-signatures (page 93) then only exported pat-
tern synonyms must have a type signature. GHC also reports the inferred type. This
option is off by default.

-Wname-shadowing
This option causes a warning to be emitted whenever an inner-scope value has the same
name as an outer-scope value, i.e. the inner value shadows the outer one. This can catch

7.2. Warnings and sanity-checking 93

GHC User’s Guide Documentation, Release 8.10.2

typographical errors that turn into hard-to-find bugs, e.g., in the inadvertent capture of
what would be a recursivecallinf = ... let f = id in ... f

The warning is suppressed for names beginning with an underscore. For example

f x = do { ignore <- this; ignore <- that; return (the other) }

-Worphans

These flags cause a warning to be emitted whenever the module contains an “orphan”
instance declaration or rewrite rule. An instance declaration is an orphan if it appears
in a module in which neither the class nor the type being instanced are declared in the
same module. A rule is an orphan if it is a rule for a function declared in another module.
A module containing any orphans is called an orphan module.

The trouble with orphans is that GHC must pro-actively read the interface files for all
orphan modules, just in case their instances or rules play a role, whether or not the
module’s interface would otherwise be of any use. See Orphan modules and instance
declarations (page 185) for details.

The flag -Worphans (page 94) warns about user-written orphan rules or instances.

-Woverlapping-patterns

By default, the compiler will warn you if a set of patterns are overlapping, e.g.,

:: String -> Int

[]
(_:xs)

f
1:
L
f ||2||

0
1
2

where the last pattern match in f won’t ever be reached, as the second pattern overlaps
it. More often than not, redundant patterns is a programmer mistake/error, so this option
is enabled by default.

-Winaccessible-code

By default, the compiler will warn you if types make a branch inaccessible. This generally
requires GADTs or similar extensions.

Take, for example, the following program

{-# LANGUAGE GADTs #-}

data Foo a where
Fool :: Foo Char
Foo2 :: Foo Int

data TyEquality a b where
Refl :: TyEquality a a

checkTEQ :: Foo t -> Foo u -> Maybe (TyEquality t u)
checkTEQ x y = error "unimportant"

step2 :: Bool

step2 = case checkTEQ Fool Foo2 of
Just Refl -> True -- Inaccessible code
Nothing -> False

The Just Refl case in step?2 is inaccessible, because in order for checkTEQ to be able to
produce a Just, t ~ umust hold, but since we’re passing Fool and Foo2 here, it follows
that t ~ Char, and u ~ Int, and thus t ~ u cannot hold.

924

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.2

-Wstar-is-type
Since 8.6

The use of * to denote the kind of inhabited types relies on the StarIsType (page 409)
extension, which in a future release will be turned off by default and then possibly re-
moved. The reasons for this and the deprecation schedule are described in GHC proposal
#30.

This warning allows to detect such uses of * before the actual breaking change takes
place. The recommended fix is to replace * with Type imported from Data.Kind.

Being part of the -Wcompat (page ??) option group, this warning is off by default, but will
be switched on in a future GHC release.

-Wstar-binder
Under StarIsType (page 409), a * in types is not an operator nor even a name, it is special
syntax that stands for Data.Kind.Type. This means that an expression like Either *
Char is parsed as Either (*) Char and not (*) Either Char.

In binding positions, we have similar parsing rules. Consider the following example

{-# LANGUAGE TypeOperators, TypeFamilies, StarIsType #-}

type family a +
type family a *

b
b

While a + bis parsed as (+) a b and becomes a binding position for the (+) type oper-
ator, a * bis parsed asa (*) b and is rejected.

As a workaround, we allow to bind (*) in prefix form:

type family (*) a b

This is a rather fragile arrangement, as generally a programmer expects (*) a b to be
equivalenttoa * b. With -Wstar-binder (page 95) we warn when this special treatment
of (*) takes place.

-Wsimplifiable-class-constraints
Since 8.2

Warn about class constraints in a type signature that can be simplified using a top-level
instance declaration. For example:

f :: Eq [a] => a -> a

Here the Eq [a] in the signature overlaps with the top-level instance for Eq [a]. GHC
goes to some efforts to use the former, but if it should use the latter, it would then have
an insoluble Eq a constraint. Best avoided by instead writing:

f:: EqQqa=>a->a

This option is on by default. As usual you can suppress it on a per-module basis with
-Wno-simplifiable-class-constraints (page 95).

-Wspace-after-bang

-Wtabs
Have the compiler warn if there are tabs in your source file.

7.2. Warnings and sanity-checking 95

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0030-remove-star-kind.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0030-remove-star-kind.rst

GHC User’s Guide Documentation, Release 8.10.2

-Wtype-defaults

Have the compiler warn/inform you where in your source the Haskell defaulting mech-
anism for numeric types kicks in. This is useful information when converting code from
a context that assumed one default into one with another, e.g., the ‘default default’ for
Haskell 1.4 caused the otherwise unconstrained value 1 to be given the type Int, whereas
Haskell 98 and later defaults it to Integer. This may lead to differences in performance
and behaviour, hence the usefulness of being non-silent about this.

This warning is off by default.

-Wmonomorphism-restriction

Have the compiler warn/inform you where in your source the Haskell Monomorphism
Restriction is applied. If applied silently the MR can give rise to unexpected behaviour,
so it can be helpful to have an explicit warning that it is being applied.

This warning is off by default.

-Wunsupported-1lvm-version

Warn when using - fl lvm (page 210) with an unsupported version of LLVM.

-Wmissed-extra-shared-1ib

Warn when GHCi can’t load a shared lib it deduced it should load when loading a package
and analyzing the extra-libraries stanza of the target package description.

-Wunticked-promoted-constructors

Warn if a promoted data constructor is used without a tick preceding its name.

For example:

data Nat = Succ Nat | Zero

data Vec n s where
Nil :: Vec Zero a
Cons :: a -> Vec n a -> Vec (Succ n) a

Will raise two warnings because Zero and Succ are not written as 'Zero and 'Succ.

This warning is enabled by default in -Wall (page 84) mode.

-Wunused-binds

Report any function definitions (and local bindings) which are unused. An alias for
* -Wunused-top-binds (page 96)
* -Wunused-local-binds (page 97)
* -Wunused-pattern-binds (page 97)

-Wunused-top-binds

Report any function definitions which are unused.

More precisely, warn if a binding brings into scope a variable that is not used, except if
the variable’s name starts with an underscore. The “starts-with-underscore” condition
provides a way to selectively disable the warning.

A variable is regarded as “used” if
e It is exported, or

» It appears in the right hand side of a binding that binds at least one used variable
that is used

For example:

96

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.2

module A (f) where
f = let (p,q) = rhsl in t p -- No warning: q is unused, but is locally bound
t = rhs3 -- No warning: f is used, and hence so is t
g =nhx -- Warning: g unused
h = rhs2 -- Warning: h is only used in the
-- right-hand side of another unused binding
_w = True -- No warning: w starts with an underscore

-Wunused-local-binds
Report any local definitions which are unused. For example:

module A (f) where

f = let (p,q) = rhsl in t p -- Warning: q is unused

g=nhx -- No warning: g 1s unused, but is a top-level,
—binding

-Wunused-pattern-binds
Warn if a pattern binding binds no variables at all, unless it is a lone wild-card pattern,
or a banged pattern. For example:

Just _ = rhs3 -- Warning: unused pattern binding

(_, _) =rhs4 -- Warning: unused pattern binding

_ = rhs3 -- No warning: lone wild-card pattern

() = rhs4 -- No warning: banged pattern; behaves like seq

In general a lazy pattern binding p = e is a no-op if p does not bind any variables. The
motivation for allowing lone wild-card patterns is they are not very different from v =
rhs3, which elicits no warning; and they can be useful to add a type constraint, e.g.
= x::Int. A banged pattern (see Bang patterns and Strict Haskell (page 474)) is not a
no-op, because it forces evaluation, and is useful as an alternative to seq.

-Wunused-imports
Report any modules that are explicitly imported but never used. However, the form
import M() is never reported as an unused import, because it is a useful idiom for im-
porting instance declarations, which are anonymous in Haskell.

-Wunused-matches
Report all unused variables which arise from term-level pattern matches, including pat-
terns consisting of a single variable. For instance f x y = [] would report x and y as
unused. The warning is suppressed if the variable name begins with an underscore,
thus:

f _x = True

Note that -Wunused-matches (page 97) does not warn about variables which arise from
type-level patterns, as found in type family and data family instances. This must be
enabled separately through the -Wunused-type-patterns (page 98) flag.

-Wunused-do-bind
Report expressions occurring in do and mdo blocks that appear to silently throw infor-
mation away. For instance do { mapM popInt xs ; return 10 } would report the first
statement in the do block as suspicious, as it has the type StackM [Int] and not StackM
(), but that [Int] value is not bound to anything. The warning is suppressed by explicitly
mentioning in the source code that your program is throwing something away:

do { _ <- mapM popInt xs ; return 10 }

7.2. Warnings and sanity-checking 97

GHC User’s Guide Documentation, Release 8.10.2

Of course, in this particular situation you can do even better:

do { mapM_ popInt xs ; return 10 }

-Wunused-type-patterns

Report all unused implicitly bound type variables which arise from patterns in type family
and data family instances. For instance:

’type instance F x y = []

|

would report x and y as unused on the right hand side. The warning is suppressed if the
type variable name begins with an underscore, like so:

’type instance F _x vy = []

|

When ExplicitForAll (page 422) is enabled, explicitly quantified type variables may
also be identified as unused. For instance:

’type instance forall x y. F x y = []

would still report x and y as unused on the right hand side

Unlike -Wunused-matches (page 97), -Wunused-type-patterns (page 98) is not implied
by -Wall (page 84). The rationale for this decision is that unlike term-level pattern
names, type names are often chosen expressly for documentation purposes, so using
underscores in type names can make the documentation harder to read.

-Wunused-foralls

Report all unused type variables which arise from explicit, user-written forall state-
ments. For instance:

g :: forall a b c. (b -> b)

would report a and ¢ as unused.

-Wunused-record-wildcards

Since 8.10.1

Report all record wildcards where none of the variables bound implicitly are used. For
instance:

data P =P { x :: Int, y :: Int }

fl :: P -> Int

fl1P{..} =1+ 3

would report that the P{. .} match is unused.

-Wredundant-record-wildcards

Since 8.10.1

Report all record wildcards where the wild card match binds no patterns. For instance:

data P =P { x :: Int, y :: Int }

fl :: P -> Int
fl P{x,y,..} =x +y

98

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.2

would report that the P{x, y, ..} match has a redundant use of ...

-Wwrong-do-bind
Report expressions occurring in do and mdo blocks that appear to lack a binding. For
instance do { return (popInt 10) ; return 10 } would report the first statement in
the do block as suspicious, as it has the type StackM (StackM Int) (which consists of two
nested applications of the same monad constructor), but which is not then “unpacked”
by binding the result. The warning is suppressed by explicitly mentioning in the source
code that your program is throwing something away:

’do { _ <- return (popInt 10) ; return 10 } ‘

For almost all sensible programs this will indicate a bug, and you probably intended to
write:

’do { popInt 10 ; return 10 } ‘

-Winline-rule-shadowing
Warn if a rewrite RULE might fail to fire because the function might be inlined before
the rule has a chance to fire. See How rules interact with INLINE/NOINLINE pragmas
(page 501).

-Wcpp-undef
Since 8.2

This flag passes -Wundef to the C pre-processor (if its being used) which causes the
pre-processor to warn on uses of the #if directive on undefined identifiers.

-Wunbanged-strict-patterns
This flag warns whenever you write a pattern that binds a variable whose type is un-
lifted, and yet the pattern is not a bang pattern nor a bare variable. See Unboxed types
(page 265) for information about unlifted types.

-Wmissing-home-modules
Since 8.2

When a module provided by the package currently being compiled (i.e. the “home”
package) is imported, but not explicitly listed in command line as a target. Useful for
Cabal to ensure GHC won't pick up modules, not listed neither in exposed-modules, nor
in other-modules.

-Wpartial-fields
Since 8.4

The option -Wpartial-fields (page 99) warns about record fields that could fail when
accessed via a lacking constructor. The function f below will fail when applied to Bar,
so the compiler will emit a warning at its definition when -Wpartial-fields (page 99)
is enabled.

The warning is suppressed if the field name begins with an underscore.

data Foo = Foo { f :: Int } | Bar

-Wunused-packages
Since 8.10

7.2. Warnings and sanity-checking 99

GHC User’s Guide Documentation, Release 8.10.2

The option -Wunused-packages (page 99) warns about packages, specified on command
line via -package (pkg) (page 188) or -package-id (unit-id) (page 189), but were
not loaded during compication. Usually it means that you have an unused dependency.

You may want to enable this warning on a clean build or enable -fforce-recomp
(page 174) in order to get reliable results.

If you’'re feeling really paranoid, the -dcore-lint (page 228) option is a good choice. It turns
on heavyweight intra-pass sanity-checking within GHC. (It checks GHC’s sanity, not yours.)

7.3 Optimisation (code improvement)

The -0* options specify convenient “packages” of optimisation flags; the -f* options de-
scribed later on specify individual optimisations to be turned on/off; the -m* options specify
machine-specific optimisations to be turned on/off.

Most of these options are boolean and have options to turn them both “on” and “off”
(beginning with the prefix no-). For instance, while -fspecialise enables specialisa-
tion, -fno-specialise disables it. When multiple flags for the same option appear in
the command-line they are evaluated from left to right. For instance, -fno-specialise
-fspecialise will enable specialisation.

It is important to note that the -0* flags are roughly equivalent to combinations of - f* flags.
For this reason, the effect of the -0* and - f* flags is dependent upon the order in which they
occur on the command line.

For instance, take the example of -fno-specialise -01. Despite the -fno-specialise ap-
pearing in the command line, specialisation will still be enabled. This is the case as -01
implies - fspecialise, overriding the previous flag. By contrast, -01 -fno-specialise will
compile without specialisation, as one would expect.

7.3.1 -0*: convenient “packages” of optimisation flags.

There are many options that affect the quality of code produced by GHC. Most people only
have a general goal, something like “Compile quickly” or “Make my program run like greased
lightning.” The following “packages” of optimisations (or lack thereof) should suffice.

Note that higher optimisation levels cause more cross-module optimisation to be performed,
which can have an impact on how much of your program needs to be recompiled when you
change something. This is one reason to stick to no-optimisation when developing code.

No ""-O*""-type option specified: This is taken to mean “Please compile quickly; I'm not
over-bothered about compiled-code quality.” So, for example, ghc -c¢ Foo.hs

-00
Means “turn off all optimisation”, reverting to the same settings as if no -0 options had
been specified. Saying -00 can be useful if e.g. make has inserted a -0 on the command
line already.

-0

-01
Means: “Generate good-quality code without taking too long about it.” Thus, for exam-
ple: ghc -c -0 Main.lhs

100 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.2

-02
Means: “Apply every non-dangerous optimisation, even if it means significantly longer
compile times.”

The avoided “dangerous” optimisations are those that can make runtime or space worse
if you're unlucky. They are normally turned on or off individually.

-0(n)
Any -On where n > 2 is the same as -O2.

We don’t use a -0* flag for day-to-day work. We use -0 to get respectable speed; e.g., when
we want to measure something. When we want to go for broke, we tend to use -02 (and we
go for lots of coffee breaks).

The easiest way to see what -0 (etc.) “really mean” is to run with -v (page 78), then stand
back in amazement.

7.3.2 -f*: platform-independent flags

These flags turn on and off individual optimisations. Flags marked as on by default are enabled
by -0, and as such you shouldn’t need to set any of them explicitly. A flag - fwombat can be
negated by saying - fno-wombat.

-fcase-merge
Default on

Merge immediately-nested case expressions that scrutinise the same variable. For ex-

ample,
case x of
Red -> el
-> case x of

Blue -> e2
Green -> e3

Is transformed to,

case x of
Red -> el
Blue -> e2

Green -> e2

-fcase-folding
Default on

Allow constant folding in case expressions that scrutinise some primops: For example,

case X ~minusWord#® 10## of
10## -> el
20## -> e2
Y -> e3

Is transformed to,

case x of
20## -> el

(continues on next page)

7.3. Optimisation (code improvement) 101

GHC User’s Guide Documentation, Release 8.10.2

(continued from previous page)

30## -> e2
-> let v = x “minusWord#" 10## in e3

-fcall-arity
Default on
Enable call-arity analysis.
-fexitification
Default on
Enables the floating of exit paths out of recursive functions.
-fcmm-elim-common-blocks
Default on

Enables the common block elimination optimisation in the code generator. This optimi-
sation attempts to find identical Cmm blocks and eliminate the duplicates.

-fcmm-sink
Default on

Enables the sinking pass in the code generator. This optimisation attempts to find iden-
tical Cmm blocks and eliminate the duplicates attempts to move variable bindings closer
to their usage sites. It also inlines simple expressions like literals or registers.

-fasm-shortcutting
Default off

This enables shortcutting at the assembly stage of the code generator. In simpler terms
shortcutting means if a block of instructions A only consists of a unconditionally jump,
we replace all jumps to A by jumps to the successor of A.

This is mostly done during Cmm passes. However this can miss corner cases. So at -O2
we run the pass again at the asm stage to catch these.

-fblock-layout-cfg
Default off but enabled with -0 (page 100).

The new algorithm considers all outgoing edges of a basic blocks for code layout instead
of only the last jump instruction. It also builds a control flow graph for functions, tries to
find hot code paths and place them sequentially leading to better cache utilization and
performance.

This is expected to improve performance on average, but actual performance difference
can vary.

If you find cases of significant performance regressions, which can be traced back to
obviously bad code layout please open a ticket.

-fblock-layout-weights
This flag is hacker territory. The main purpose of this flag is to make it easy to debug
and tune the new code layout algorithm. There is no guarantee that values giving better
results now won’t be worse with the next release.

If you feel your code warrants modifying these settings please consult the source code
for default values and documentation. But I strongly advise against this.

102 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.2

-fblock-layout-weightless
Default off

When not using the cfg based blocklayout layout is determined either by the last jump
in a basic block or the heaviest outgoing edge of the block in the cfg.

With this flag enabled we use the last jump instruction in blocks. Without this flags the
old algorithm also uses the heaviest outgoing edge.

When this flag is enabled and - fblock-layout-cfg (page 102) is disabled block layout
behaves the same as in 8.6 and earlier.

-fcpr-anal
Default on
Turn on CPR analysis in the demand analyser.
-fcse
Default on

Enables the common-sub-expression elimination optimisation. Switching this off can be
useful if you have some unsafePerformIO expressions that you don’t want commoned-
up.
-fstg-cse
Default on

Enables the common-sub-expression elimination optimisation on the STG intermediate
language, where it is able to common up some subexpressions that differ in their types,
but not their representation.

-fdicts-cheap
Default off

A very experimental flag that makes dictionary-valued expressions seem cheap to the
optimiser.

-fdicts-strict
Default off
Make dictionaries strict.
-fdmd-tx-dict-sel
Default on
Use a special demand transformer for dictionary selectors.
-fdo-eta-reduction
Default on
Eta-reduce lambda expressions, if doing so gets rid of a whole group of lambdas.
-fdo-lambda-eta-expansion
Default on
Eta-expand let-bindings to increase their arity.
-feager-blackholing
Default off

7.3. Optimisation (code improvement) 103

GHC User’s Guide Documentation, Release 8.10.2

Usually GHC black-holes a thunk only when it switches threads. This flag makes it do so
as soon as the thunk is entered. See Haskell on a shared-memory multiprocessor.

See Compile-time options for SMP parallelism (page 113) for a dicussion on its use.
-fexcess-precision
Default off

When this option is given, intermediate floating point values can have a greater preci-
sion/range than the final type. Generally this is a good thing, but some programs may
rely on the exact precision/range of Float/Double values and should not use this option
for their compilation.

Note that the 32-bit x86 native code generator only supports excess-precision mode,
so neither -fexcess-precision nor -fno-excess-precision has any effect. This is a
known bug, see Bugs in GHC (page 594).

-fexpose-all-unfoldings
Default off

An experimental flag to expose all unfoldings, even for very large or recursive functions.
This allows for all functions to be inlined while usually GHC would avoid inlining larger
functions.

-ffloat-in
Default on

Float let-bindings inwards, nearer their binding site. See Let-floating: moving bindings
to give faster programs (ICFP’96).

This optimisation moves let bindings closer to their use site. The benefit here is that
this may avoid unnecessary allocation if the branch the let is now on is never executed.
It also enables other optimisation passes to work more effectively as they have more
information locally.

This optimisation isn’t always beneficial though (so GHC applies some heuristics to de-
cide when to apply it). The details get complicated but a simple example is that it is often
beneficial to move let bindings outwards so that multiple let bindings can be grouped into
a larger single let binding, effectively batching their allocation and helping the garbage
collector and allocator.

-ffull-laziness
Default on

Run the full laziness optimisation (also known as let-floating), which floats let-bindings
outside enclosing lambdas, in the hope they will be thereby be computed less often. See
Let-floating: moving bindings to give faster programs (ICFP’96). Full laziness increases
sharing, which can lead to increased memory residency.

Note: GHC doesn’t implement complete full laziness. Although GHC'’s full-laziness op-
timisation does enable some transformations which would be performed by a fully lazy
implementation (such as extracting repeated computations from loops), these transfor-
mations are not applied consistently, so don’t rely on them.

-ffun-to-thunk
Default off

104 Chapter 7. Using GHC

http://community.haskell.org/~simonmar/papers/multiproc.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz

GHC User’s Guide Documentation, Release 8.10.2

Worker-wrapper removes unused arguments, but usually we do not remove them all,
lest it turn a function closure into a thunk, thereby perhaps creating a space leak and/or
disrupting inlining. This flag allows worker/wrapper to remove all value lambdas.

-fignore-asserts
Default on

Causes GHC to ignore uses of the function Exception.assert in source code (in other
words, rewriting Exception.assert p e to e (see Assertions (page 481)).

-fignore-interface-pragmas
Default off

Tells GHC to ignore all inessential information when reading interface files. That is, even
if M. hi contains unfolding or strictness information for a function, GHC will ignore that
information.

-flate-dmd-anal
Default off

Run demand analysis again, at the end of the simplification pipeline. We found some
opportunities for discovering strictness that were not visible earlier; and optimisations
like - fspec-constr (page 107) can create functions with unused arguments which are
eliminated by late demand analysis. Improvements are modest, but so is the cost. See
notes on the wiki page.

-fliberate-case
Default off but enabled with -02 (page 100).

Turn on the liberate-case transformation. This unrolls recursive function once in its own
RHS, to avoid repeated case analysis of free variables. It's a bit like the call-pattern
specialiser (- fspec-constr (page 107)) but for free variables rather than arguments.

-fliberate-case-threshold=(n)
Default 2000
Set the size threshold for the liberate-case transformation.
-floopification
Default on

When this optimisation is enabled the code generator will turn all self-recursive saturated
tail calls into local jumps rather than function calls.

-fllvm-pass-vectors-in-regs
Default on

Instructs GHC to use the platform’s native vector registers to pass vector arguments
during function calls. As with all vector support, this requires - fllvm (page 210).

-fmax-inline-alloc-size=(n)
Default 128

Set the maximum size of inline array allocations to n bytes. GHC will allocate non-pinned
arrays of statically known size in the current nursery block if they’re no bigger than n
bytes, ignoring GC overheap. This value should be quite a bit smaller than the block size
(typically: 4096).

7.3. Optimisation (code improvement) 105

https://gitlab.haskell.org/ghc/ghc/wikis/late-dmd

GHC User’s Guide Documentation, Release 8.10.2

-fmax-inline-memcpy-insns=(n)
Default 32
Inline memcpy calls if they would generate no more than (n) pseudo-instructions.
-fmax-inline-memset-insns=(n)
Default 32
Inline memset calls if they would generate no more than n pseudo instructions.
-fmax-relevant-binds=(n)
Default 6

The type checker sometimes displays a fragment of the type environment in error mes-
sages, but only up to some maximum number, set by this flag. Turning it off with
-fno-max-relevant-binds gives an unlimited number. Syntactically top-level bindings
are also usually excluded (since they may be numerous), but - fno-max-relevant-binds
includes them too.

-fmax-uncovered-patterns=(n)
Default 4

Maximum number of unmatched patterns to be shown in warnings generated by
-Wincomplete-patterns (page 91) and -Wincomplete-uni-patterns (page 91).

-fmax-simplifier-iterations=(n)
Default 4
Sets the maximal number of iterations for the simplifier.
-fmax-worker-args=(n)
Default 10
If a worker has that many arguments, none will be unpacked anymore.
-fno-opt-coercion
Default coercion optimisation enabled.
Turn off the coercion optimiser.
-fno-pre-inlining
Default pre-inlining enabled
Turn off pre-inlining.
-fno-state-hack
Default state hack is enabled

Turn off the “state hack” whereby any lambda with a State# token as argument is con-
sidered to be single-entry, hence it is considered okay to inline things inside it. This can
improve performance of IO and ST monad code, but it runs the risk of reducing sharing.

-fomit-interface-pragmas
Default Implied by -00 (page ??), otherwise off.

Tells GHC to omit all inessential information from the interface file generated for the
module being compiled (say M). This means that a module importing M will see only
the types of the functions that M exports, but not their unfoldings, strictness info, etc.

106 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.2

Hence, for example, no function exported by M will be inlined into an importing module.
The benefit is that modules that import M will need to be recompiled less often (only
when M’s exports change their type, not when they change their implementation).

-fomit-yields
Default yield points enabled

Tells GHC to omit heap checks when no allocation is being performed. While this im-
proves binary sizes by about 5%, it also means that threads run in tight non-allocating
loops will not get preempted in a timely fashion. If it is important to always be able to
interrupt such threads, you should turn this optimization off. Consider also recompiling
all libraries with this optimization turned off, if you need to guarantee interruptibility.

-fpedantic-bottoms
Default off

Make GHC be more precise about its treatment of bottom (but see also - fno-state-hack
(page 106)). In particular, stop GHC eta-expanding through a case expression, which is
good for performance, but bad if you are using seq on partial applications.

-fregs-graph
Default off due to a performance regression bug (#7679)

Only applies in combination with the native code generator. Use the graph colouring reg-
ister allocator for register allocation in the native code generator. By default, GHC uses
a simpler, faster linear register allocator. The downside being that the linear register
allocator usually generates worse code.

Note that the graph colouring allocator is a bit experimental and may fail when faced
with code with high register pressure #8657.

-fregs-iterative
Default off

Only applies in combination with the native code generator. Use the iterative coalescing
graph colouring register allocator for register allocation in the native code generator.
This is the same register allocator as the - fregs-graph (page 107) one but also enables
iterative coalescing during register allocation.

-fsimplifier-phases=(n)
Default 2
Set the number of phases for the simplifier. Ignored with -00.
-fsimpl-tick-factor=(n)
Default 100

GHC'’s optimiser can diverge if you write rewrite rules (Rewrite rules (page 498)) that
don’t terminate, or (less satisfactorily) if you code up recursion through data types (Bugs
in GHC (page 594)). To avoid making the compiler fall into an infinite loop, the optimiser
carries a “tick count” and stops inlining and applying rewrite rules when this count is
exceeded. The limit is set as a multiple of the program size, so bigger programs get more
ticks. The -fsimpl-tick-factor flag lets you change the multiplier. The default is 100;
numbers larger than 100 give more ticks, and numbers smaller than 100 give fewer.

If the tick-count expires, GHC summarises what simplifier steps it has done; you can use
-fddump-simpl-stats to generate a much more detailed list. Usually that identifies the
loop quite accurately, because some numbers are very large.

7.3. Optimisation (code improvement) 107

https://gitlab.haskell.org/ghc/ghc/issues/7679
https://gitlab.haskell.org/ghc/ghc/issues/8657

GHC User’s Guide Documentation, Release 8.10.2

-fspec-constr
Default off but enabled by -02 (page 100).
Turn on call-pattern specialisation; see Call-pattern specialisation for Haskell programs.

This optimisation specializes recursive functions according to their argument “shapes”.
This is best explained by example so consider:

last :: [a]l -> a

last [] = error "last"
last (x : [1) = x

last (x : xs) = last xs

In this code, once we pass the initial check for an empty list we know that in the recursive
case this pattern match is redundant. As such -fspec-constr will transform the above

code to:
last :: [a] -> a
last [1] = error "last"
last (x : xs) = last' x xs
where
last' x [1 = X
last' x (y : ys) = last' y ys

As well avoid unnecessary pattern matching it also helps avoid unnecessary allocation.
This applies when a argument is strict in the recursive call to itself but not on the initial
entry. As strict recursive branch of the function is created similar to the above example.

It is also possible for library writers to instruct GHC to perform call-pattern specialisation
extremely aggressively. This is necessary for some highly optimized libraries, where we
may want to specialize regardless of the number of specialisations, or the size of the
code. As an example, consider a simplified use-case from the vector library:

import GHC.Types (SPEC(..))

foldl :: (a => b -> a) -> a -> Stream b -> a

{-# INLINE foldl #-}

foldl f z (Stream step s _) = foldl loop SPEC z s

where
foldl loop !sPEC z s = case step s of

Yield x s' -> foldl loop sPEC (f z x) s'
Skip -> foldl loop sPEC z s'
Done -=> Zz

Here, after GHC inlines the body of foldl to a call site, it will perform call-pattern
specialisation very aggressively on foldl loop due to the use of SPEC in the argument
of the loop body. SPEC from GHC.Types is specifically recognised by the compiler.

(NB: it is extremely important you use seq or a bang pattern on the SPEC argument!)

In particular, after inlining this will expose f to the loop body directly, allowing heavy
specialisation over the recursive cases.

-fspec-constr-keen
Default off

If this flag is on, call-pattern specialisation will specialise a call (f (Just x)) with an
explicit constructor argument, even if the argument is not scrutinised in the body of the

108 Chapter 7. Using GHC

https://www.microsoft.com/en-us/research/publication/system-f-with-type-equality-coercions-2/

GHC User’s Guide Documentation, Release 8.10.2

function. This is sometimes beneficial; e.g. the argument might be given to some other
function that can itself be specialised.

-fspec-constr-count=(n)
Default 3

Set the maximum number of specialisations that will be created for any one function by
the SpecConstr transformation.

-fspec-constr-threshold=(n)
Default 2000
Set the size threshold for the SpecConstr transformation.
-fspecialise
Default on

Specialise each type-class-overloaded function defined in this module for the types at
which it is called in this module. If - fcross-module-specialise (page 109) is set im-
ported functions that have an INLINABLE pragma (INLINABLE pragma (page 489)) will
be specialised as well.

-fspecialise-aggressively
Default off

By default only type class methods and methods marked INLINABLE or INLINE are spe-
cialised. This flag will specialise any overloaded function regardless of size if its un-
folding is available. This flag is not included in any optimisation level as it can mas-
sively increase code size. It can be used in conjunction with - fexpose-all-unfoldings
(page 104) if you want to ensure all calls are specialised.

-fcross-module-specialise
Default on

Specialise INLINABLE (INLINABLE pragma (page 489)) type-class-overloaded functions
imported from other modules for the types at which they are called in this module. Note
that specialisation must be enabled (by - fspecialise) for this to have any effect.

-flate-specialise
Default off

Runs another specialisation pass towards the end of the optimisation pipeline. This can
catch specialisation opportunities which arose from the previous specialisation pass or
other inlining.

You might want to use this if you are you have a type class method which returns a
constrained type. For example, a type class where one of the methods implements a
traversal.

-fsolve-constant-dicts
Default on
When solving constraints, try to eagerly solve super classes using available dictionaries.

For example:

7.3. Optimisation (code improvement) 109

GHC User’s Guide Documentation, Release 8.10.2

class M a b wherem :: a -=> b
type Ca b = (Num a, M a b)

f :: CIntb=>b ->1Int ->Int
f X =x+1

The body of f requires a Num Int instance. We could solve this constraint from the
context because we have C Int b and that provides us a solution for Num Int. However,
we can often produce much better code by directly solving for an available Num Int
dictionary we might have at hand. This removes potentially many layers of indirection
and crucially allows other optimisations to fire as the dictionary will be statically known
and selector functions can be inlined.

The optimisation also works for GADTs which bind dictionaries. If we statically know
which class dictionary we need then we will solve it directly rather than indirectly using
the one passed in at run time.

-fstatic-argument-transformation
Default off

Turn on the static argument transformation, which turns a recursive function into a non-
recursive one with a local recursive loop. See Chapter 7 of Andre Santos’s PhD thesis.

-fstg-lift-lams
Default on

Enables the late lambda lifting optimisation on the STG intermediate language. This
selectively lifts local functions to top-level by converting free variables into function pa-
rameters.

-fstg-lift-lams-known
Default off

Allow turning known into unknown calls while performing late lambda lifting. This is
deemed non-beneficial, so it’s off by default.

-fstg-lift-lams-non-rec-args
Default 5

Create top-level non-recursive functions with at most <n> parameters while performing
late lambda lifting. The default is 5, the number of available parameter registers on
x86 _64.

-fstg-lift-lams-rec-args
Default 5

Create top-level recursive functions with at most <n> parameters while performing late
lambda lifting. The default is 5, the number of available parameter registers on x86 64.

-fstrictness
Default on

Switch on the strictness analyser. The implementation is described in the paper Theory
and Practice of Demand Analysis in Haskell.

The strictness analyser figures out when arguments and variables in a function can be
treated ‘strictly’ (that is they are always evaluated in the function at some point). This

110 Chapter 7. Using GHC

https://www.microsoft.com/en-us/research/publication/compilation-transformation-non-strict-functional-languages/
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/03/demand-jfp-draft.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/03/demand-jfp-draft.pdf

GHC User’s Guide Documentation, Release 8.10.2

allow GHC to apply certain optimisations such as unboxing that otherwise don’t apply
as they change the semantics of the program when applied to lazy arguments.

-fstrictness-before=(n)
Run an additional strictness analysis before simplifier phase (n).

-funbox-small-strict-fields
Default on

This option causes all constructor fields which are marked strict (i.e. “!”) and which
representation is smaller or equal to the size of a pointer to be unpacked, if possible.
It is equivalent to adding an UNPACK pragma (see UNPACK pragma (page 495)) to every
strict constructor field that fulfils the size restriction.

For example, the constructor fields in the following data types

data A = A !Int
data B B 'A
newtype C = C B
data D = D !C

would all be represented by a single Int# (see Unboxed types and primitive operations
(page 265)) value with -funbox-small-strict-fields enabled.

This option is less of a sledgehammer than -funbox-strict-fields: it should rarely
make things worse. If you use - funbox-small-strict-fields to turn on unboxing by
default you can disable it for certain constructor fields using the NOUNPACK pragma (see
NOUNPACK pragma (page 496)).

Note that for consistency Double, Word64, and Int64 constructor fields are unpacked
on 32-bit platforms, even though they are technically larger than a pointer on those
platforms.

-funbox-strict-fields
Default off

This option causes all constructor fields which are marked strict (i.e. !) to be unpacked
if possible. It is equivalent to adding an UNPACK pragma to every strict constructor field
(see UNPACK pragma (page 495)).

This option is a bit of a sledgehammer: it might sometimes make things worse. Selec-
tively unboxing fields by using UNPACK pragmas might be better. An alternative is to
use -funbox-strict-fields to turn on unboxing by default but disable it for certain
constructor fields using the NOUNPACK pragma (see NOUNPACK pragma (page 496)).

Alternatively you can use - funbox-small-strict-fields (page 111) to only unbox strict
fields which are “small”.

-funfolding-creation-threshold=(n)
Default 750

Governs the maximum size that GHC will allow a function unfolding to be. (An unfolding
has a “size” that reflects the cost in terms of “code bloat” of expanding (aka inlining)
that unfolding at a call site. A bigger function would be assigned a bigger cost.)

Consequences:
a. nothing larger than this will be inlined (unless it has an INLINE pragma)

b. nothing larger than this will be spewed into an interface file.

7.3. Optimisation (code improvement) 111

GHC User’s Guide Documentation, Release 8.10.2

Increasing this figure is more likely to result in longer compile times than faster code.
The - funfolding-use-threshold=(n) (page 112) is more useful.

-funfolding-dict-discount=(n)
Default 30
How eager should the compiler be to inline dictionaries?
-funfolding-fun-discount=(n)
Default 60
How eager should the compiler be to inline functions?
-funfolding-keeness-factor=(n)
Default 1.5
How eager should the compiler be to inline functions?
-funfolding-use-threshold=(n)
Default 60

This is the magic cut-off figure for unfolding (aka inlining): below this size, a function
definition will be unfolded at the call-site, any bigger and it won’t. The size computed for
a function depends on two things: the actual size of the expression minus any discounts
that apply depending on the context into which the expression is to be inlined.

The difference between this and - funfolding-creation-threshold=(n) (page 111) is
that this one determines if a function definition will be inlined at a call site. The other
option determines if a function definition will be kept around at all for potential inlining.

-fworker-wrapper
Enable the worker-wrapper transformation after a strictness analysis pass. Implied
by -0 (page 100), and by -fstrictness (page 110). Disabled by -fno-strictness
(page ??). Enabling - fworker-wrapper (page 112) while strictness analysis is disabled
(by -fno-strictness (page ??)) has no effect.

-fbinary-blob-threshold=(n)
Default 500000

The native code-generator can either dump binary blobs (e.g. string literals) into the
assembly file (by using “.asciz” or “.string” assembler directives) or it can dump them
as binary data into a temporary file which is then included by the assembler (using the
“.incbin” assembler directive).

This flag sets the size (in bytes) threshold above which the second approach is used. You
can disable the second approach entirely by setting the threshold to 0.

7.4 Using Concurrent Haskell

GHC supports Concurrent Haskell by default, without requiring a special option or libraries
compiled in a certain way. To get access to the support libraries for Concurrent Haskell,
just import Control.Concurrent. More information on Concurrent Haskell is provided in the
documentation for that module.

Optionally, the program may be linked with the -threaded (page 214) option (see Options
affecting linking (page 212). This provides two benefits:

112 Chapter 7. Using GHC

../libraries/base-4.14.1.0/Control-Concurrent.html

GHC User’s Guide Documentation, Release 8.10.2

* It enables the -N (x) (page 114) to be used, which allows threads to run in parallelism
on a multi-processor or multi-core machine. See Using SMP parallelism (page 113).

» If a thread makes a foreign call (and the call is not marked unsafe), then other Haskell
threads in the program will continue to run while the foreign call is in progress. Addi-
tionally, foreign exported Haskell functions may be called from multiple OS threads
simultaneously. See Multi-threading and the FFI (page 540).

The following RTS option(s) affect the behaviour of Concurrent Haskell programs:
-C (s)
Default 20 milliseconds

Sets the context switch interval to (s) seconds. A context switch will occur at the next
heap block allocation after the timer expires (a heap block allocation occurs every 4k
of allocation). With -CO or -C, context switches will occur as often as possible (at every
heap block allocation).

7.5 Using SMP parallelism

GHC supports running Haskell programs in parallel on an SMP (symmetric multiprocessor).

There’s a fine distinction between concurrency and parallelism: parallelism is all about mak-
ing your program run faster by making use of multiple processors simultaneously. Concur-
rency, on the other hand, is a means of abstraction: it is a convenient way to structure a
program that must respond to multiple asynchronous events.

However, the two terms are certainly related. By making use of multiple CPUs it is possible
to run concurrent threads in parallel, and this is exactly what GHC’s SMP parallelism sup-
port does. But it is also possible to obtain performance improvements with parallelism on
programs that do not use concurrency. This section describes how to use GHC to compile
and run parallel programs, in Concurrent and Parallel Haskell (page 514) we describe the
language features that affect parallelism.

7.5.1 Compile-time options for SMP parallelism

In order to make use of multiple CPUs, your program must be linked with the -threaded
(page 214) option (see Options affecting linking (page 212)). Additionally, the following com-
piler options affect parallelism:

-feager-blackholing
Blackholing is the act of marking a thunk (lazy computation) as being under evaluation.
It is useful for three reasons: firstly it lets us detect certain kinds of infinite loop (the
NonTermination exception), secondly it avoids certain kinds of space leak, and thirdly
it avoids repeating a computation in a parallel program, because we can tell when a
computation is already in progress.

The option - feager-blackholing (page 103) causes each thunk to be blackholed as soon
as evaluation begins. The default is “lazy blackholing”, whereby thunks are only marked
as being under evaluation when a thread is paused for some reason. Lazy blackholing is
typically more efficient (by 1-2% or so), because most thunks don’t need to be blackholed.
However, eager blackholing can avoid more repeated computation in a parallel program,
and this often turns out to be important for parallelism.

7.5. Using SMP parallelism 113

GHC User’s Guide Documentation, Release 8.10.2

We recommend compiling any code that is intended to be run in parallel with the
-feager-blackholing (page 103) flag.

7.5.2 RTS options for SMP parallelism

There are two ways to run a program on multiple processors: call Con-
trol.Concurrent.setNumCapabilities from your program, or use the RTS -N (x) (page 114)
options.

-N (x)
-maxN (x)
Use (x) simultaneous threads when running the program.

The runtime manages a set of virtual processors, which we call capabilities, the number
of which is determined by the -N option. Each capability can run one Haskell thread at a
time, so the number of capabilities is equal to the number of Haskell threads that can run
physically in parallel. A capability is animated by one or more OS threads; the runtime
manages a pool of OS threads for each capability, so that if a Haskell thread makes a
foreign call (see Multi-threading and the FFI (page 540)) another OS thread can take
over that capability.

Normally (x) should be chosen to match the number of CPU cores on the machine'. For
example, on a dual-core machine we would probably use +RTS -N2 -RTS.

Omitting (x), i.e. +RTS -N -RTS, lets the runtime choose the value of (x) itself based on
how many processors are in your machine.

Omitting -N(x) entirely means -N1.

With -maxN({x), i.e. +RTS -maxN3 -RTS, the runtime will choose at most (x), also limited
by the number of processors on the system. Omitting (x) is an error, if you need a default
use option -N.

Be careful when using all the processors in your machine: if some of your processors are
in use by other programs, this can actually harm performance rather than improve it.
Asking GHC to create more capabilities than you have physical threads is almost always
a bad idea.

Setting -N also has the effect of enabling the parallel garbage collector (see RTS options
to control the garbage collector (page 154)).

The current value of the -N option is available to the Haskell program via Control.
Concurrent.getNumCapabilities, and it may be changed while the program is running
by calling Control.Concurrent.setNumCapabilities.

The following options affect the way the runtime schedules threads on CPUs:

-qa
Use the OS’s affinity facilities to try to pin OS threads to CPU cores.
When this option is enabled, the OS threads for a capability i are bound to the CPU core
1 using the API provided by the OS for setting thread affinity. e.g. on Linux GHC uses
sched setaffinity().

Depending on your workload and the other activity on the machine, this may or may not
result in a performance improvement. We recommend trying it out and measuring the
difference.

1 Whether hyperthreading cores should be counted or not is an open question; please feel free to experiment and
let us know what results you find.

114 Chapter 7. Using GHC

../libraries/base-4.14.1.0/Control-Concurrent.html#v:setNumCapabilities
../libraries/base-4.14.1.0/Control-Concurrent.html#v:setNumCapabilities

GHC User’s Guide Documentation, Release 8.10.2

-qgm
Disable automatic migration for load balancing. Normally the runtime will automatically
try to schedule threads across the available CPUs to make use of idle CPUs; this option
disables that behaviour. Note that migration only applies to threads; sparks created by
par are load-balanced separately by work-stealing.

This option is probably only of use for concurrent programs that explicitly schedule
threads onto CPUs with Control.Concurrent.forkOn.

7.5.3 Hints for using SMP parallelism

Add the -s [(file)] (page 161) RTS option when running the program to see timing stats,
which will help to tell you whether your program got faster by using more CPUs or not. If the
user time is greater than the elapsed time, then the program used more than one CPU. You
should also run the program without -N (x) (page 114) for comparison.

The output of +RTS -s tells you how many “sparks” were created and executed during the
run of the program (see RTS options to control the garbage collector (page 154)), which will
give you an idea how well your par annotations are working.

GHC'’s parallelism support has improved in 6.12.1 as a result of much experimentation and
tuning in the runtime system. We’d still be interested to hear how well it works for you, and
we're also interested in collecting parallel programs to add to our benchmarking suite.

7.6 Flag reference

This section is a quick-reference for GHC’s command-line flags. For each flag, we also list its
mode/dynamic status (see Dynamic and Mode options (page 73)), and the flag’s opposite (if
available).

7.6.1 Verbosity options

More details in Verbosity options (page 78)

Flag Description Type Reverse
-fabstract-refinement-holedéfaidt: off. Toggles | dynamic| -fno-abstract-refinement-hole-
(page 448) whether refinements (page ??)

where one or more of the

holes are abstract are

reported.
-fdefer-diagnostics Defer and group diagnos- | dynamic
(page 81) tic messages by severity
-fdiagnostics-color=(alwgyWseutolomvar Jerror mes- | dynamic
(page 81) sages
-fdiagnostics-show-caret | Whether to show snippets | dynamic| - fno-diagnostics-show-caret
(page 82) of original source code (page ??)
-ferror-spans (page 82) Output full span in error | dynamic

messages
-fhide-source-paths hide module source and | dynamic
(page 78) object paths

continues on next page

7.6. Flag reference 115

../libraries/base-4.14.1.0/Control-Concurrent.html#v:forkOn

GHC User’s Guide Documentation, Release 8.10.2

Table 1 - continued from previous page

rhole-fits

inds

Frfits

its

comps

relations

synonyms

Flag Description Type Reverse
-fkeep-going (page 82) Continue compilation as | dynamic

far as possible on errors
-fmax-refinement-hole-fitsdéfault: 6. Set the max- | dynamic| - fno-max-refinement
(page 448) imum number of refine- (page ??)

ment hole fits for typed

holes to display in type er-

ror messages.
-fmax-relevant-binds=(n) | default: 6. Set the max- | dynamic| - fno-max-relevant-Db|
(page 106) imum number of bindings (page ??)

to display in type error

messages.
-fmax-valid-hole-fits=(n) default: 6. Set the maxi- | dynamic| - fno-max-valid-hole
(page 446) mum number of valid hole (page ??)

fits for typed holes to dis-

play in type error mes-

sages.
-fno-show-valid-hole-fitg Disables showing a list of | dynamic
(page 446) valid hole fits for typed

holes in type error mes-

sages.
-fno-sort-valid-hole-fitg Disables the sorting of the | dynamic| - fsort-valid-hole- f]
(page 449) list of valid hole fits for (page ??)

typed holes in type error

messages.
-fprint-axiom-incomps Display equation incom- | dynamic| - fno-print-axiom-in
(page 79) patibilities in closed type (page ??)

families
-fprint-equality-relationsDistinguish between | dynamic| -fno-print-equality;
(page 80) equality relations when (page ??)

printing
-fprint-expanded-synonymg In type errors, also print | dynamic| - fno-print-expandedt
(page 80) type-synonym-expanded (page ??)

types.
-fprint-explicit-coercionsPrint coercions in types dynamic| - fno-print-explicitt
(page 79) (page ??)
-fprint-explicit-foralls | Print explicit forall | dynamic| -fno-print-explicitt
(page 78) quantification in types. (page ??)

See also ExplicitForAll

(page 422)
-fprint-explicit-kinds Print explicit kind | dynamic| - fno-print-explicitt
(page 79) foralls and kind argu- (page ?7?)

ments in types. See

also KindSignatures

(page 425)
-fprint-explicit-runtime-rBrint RuntimeRep vari- | dynamic| - fno-print-explicitt

(page 413)

ables in types which are
runtime-representation
polymorphic.

(page ??)

continues on next page

116

Chapter 7. Using GHC

coercions

foralls

kinds

runtime-re|

GHC User’s Guide Documentation, Release 8.10.2

Table 1 - continued from previous page

l-instances

ker-elabora

syntax

el-hole-fit.

ple-fits

hes-of-hole

e-of-hole-f.

of-hole-fit:

vars-of-hol

its

Flag Description Type Reverse
-fprint-potential-instandedisplay all available in- | dynamic| - fno-print-potentia
(page 78) stances in