<, for two elements in a path algebra 4.5-2 * 3.7-5 ., for a path algebra 4.4-4 / 6.7-13 1stSyzygy 8.1-1 = 3.7-6 \* (maps) 7.2-3 \+ (maps) 7.2-2 \=, for two path algebra matrix modules 6.1-3 \= (maps) 7.2-1 \^ 10.2-6 \in, elt. in path alg. and ideal 4.7-6 ^, a PathAlgebraMatModule element and a PathAlgebra element 6.3-1 AddNthPowerToRelations 4.7-5 AdjacencyMatrixOfQuiver 3.5-4 AdmissibleSequenceGenerator 4.15-5 AdmitsFinitelyManyNontips 5.3-1 AlgebraAsModuleOverEnvelopingAlgebra 4.17-13 AlgebraAsQuiverAlgebra 4.19-1 AllComplementsOfAlmostCompleteCotiltingModule 8.1-2 AllComplementsOfAlmostCompleteTiltingModule 8.1-2 AllIndecModulesOfLengthAtMost 7.3-1 AllModulesOfLengthAtMost 7.3-2 AllSimpleSubmodulesOfModule 7.3-3 AllSubmodulesOfModule 7.3-4 AlmostSplitSequence 9.1-1 9.1-1 AlmostSplitSequenceInPerpT 9.1-2 AnnihilatorOfModule 6.4-1 ARQuiverNumerical 13.3-1 13.3-1 13.3-1 13.3-1 ArrowsOfQuiver 3.5-3 AssignGeneratorVariables 4.6-1 AssociatedMonomialAlgebra 4.4-1 BandRepresentativesLessThan 4.12-5 BandsLessThan 4.12-4 BasicVersionOfModule 6.4-2 BasisOfProjectives 6.5-1 BilinearFormOfUnitForm 12.2-2 BlockDecompositionOfModule 6.4-3 BlocksOfAlgebra 4.19-2 BlockSplittingIdempotents 6.4-4 BongartzTest 4.11-24 BoundariesOfComplex 10.5-6 BrauerConfigurationAlgebra 4.15-1 BridgeQuiver 4.12-7 BrutalTruncation 10.6-6 BrutalTruncationAbove 10.6-5 BrutalTruncationBelow 10.6-4 CanonicalAlgebra 4.15-2 CartanMatrix 4.13-1 CatOfComplex 10.5-1 CatOfRightAlgebraModules 10.3-2 Centre/Center 4.13-2 ChainMap 10.7-2 Coefficients 4.14-2 CoKernel 7.3-5 CoKernelOfWhat 7.2-4 CoKernelProjection 7.3-6 CommonDirectSummand 6.4-5 ComparisonLifting 10.7-8 ComparisonLiftingToProjectiveResolution 10.7-9 CompletelyReduce 5.3-2 CompletelyReduceGroebnerBasis 5.3-3 CompletelyReduceGroebnerBasisForModule 6.7-2 Complex 10.4-3 ComplexAndChainMaps 10.7-5 ComplexityOfAlgebra 4.13-3 ComplexityOfModule 6.4-6 ConnectedComponentsOfQuiver 3.5-11 ConstantInfList 10.2-25 CosyzygyTruncation 10.6-8 CotiltingModule 8.1-3 CoxeterMatrix 4.13-4 CoxeterPolynomial 4.13-5 Cut 10.2-20 CyclesOfComplex 10.5-5 DecomposeModule 6.4-7 DecomposeModuleProbabilistic 6.4-8 DecomposeModuleViaCharPoly 6.4-9 DecomposeModuleViaTop 6.4-10 DecomposeModuleWithInclusions 6.4-7 DecomposeModuleWithMultiplicities 6.4-11 DegOrderDirectPredecessors 13.5-3 DegOrderDirectSuccessors 13.5-6 DegOrderLEQ 13.4-6 DegOrderLEQNC 13.4-7 DegOrderPredecessors 13.5-2 DegOrderPredecessorsWithDirect 13.5-4 DegOrderSuccessors 13.5-5 DegOrderSuccessorsWithDirect 13.5-7 DifferentialOfComplex 10.5-3 DifferentialsOfComplex 10.5-4 DimEnd 13.4-3 Dimension 4.13-6 DimensionVector 6.4-13 DimHom 13.4-2 Direction 10.2-9 DirectSumInclusions 6.4-15 DirectSumOfQPAModules 6.4-14 DirectSumProjections 6.4-16 DominantDimensionOfAlgebra 8.1-4 DominantDimensionOfModule 8.1-5 DoubleQuiver 3.5-12 DTr 6.6-3 6.6-4 DualOfAlgebraAsModuleOverEnvelopingAlgebra 4.17-14 DualOfModule 6.6-1 DualOfModuleHomomorphism 6.6-2 DualOfTranspose 6.6-3 DynkinQuiver, DynkinQuiver 3.2-2 ElementFunction 10.2-12 ElementInIndecProjective 6.5-2 ElementOfPathAlgebra 4.5-1 ElementOfQuotientOfPathAlgebra 4.14-5 EndModuloProjOverAlgebra 7.3-7 EndOfModuleAsQuiverAlgebra 7.3-8 EndOverAlgebra 7.3-9 Enumerator 5.3-4 EnvelopingAlgebra 4.17-10 EnvelopingAlgebraHomomorphism 4.17-11 EulerBilinearFormOfAlgebra 12.2-9 ExtAlgebraGenerators 8.1-6 ExtOverAlgebra 8.1-7 FaithfulDimension 8.1-8 FiniteChainMap 10.7-4 FiniteComplex 10.4-5 FiniteInfList 10.2-26 FinitePartAsList 10.2-36 ForEveryDegree 10.5-17 FrobeniusForm 4.13-7 FrobeniusLinearFunctional 4.13-8 FromEndMToHomMM 7.3-10 FromHomMMToEndM 7.3-11 FromIdentityToDoubleStarHomomorphism 6.4-17 FullSubquiver 3.5-10 FunctionInfList 10.2-24 GeneratorsOfQuiver 3.5-5 GlobalDimension 4.13-9 GlobalDimensionOfAlgebra 8.1-9 GorensteinDimension 8.1-10 GorensteinDimensionOfAlgebra 8.1-11 GroebnerBasis 5.1-2 GroebnerBasisOfIdeal 4.10-1 HalfInfList 10.2-21 HaveFiniteCoresolutionInAddM 8.1-12 HaveFiniteResolutionInAddM 8.1-13 HighestKnownDegree 10.5-12 HighestKnownPosition 10.2-32 HighestKnownValue 10.2-18 HomFactoringThroughProjOverAlgebra 7.3-12 HomFromProjective 7.3-13 HomologyOfComplex 10.5-7 HomomorphismFromImages 7.2-27 HomOverAlgebra 7.3-14 HomOverAlgebraWithBasisFunction 7.3-14 Ideal 4.7-1 IdealOfQuotient 4.7-2 IdentityMapping 7.2-5 Image 7.3-15 ImageElm 7.2-6 ImageInclusion 7.3-16 ImageOfWhat 7.2-8 ImageProjection 7.3-17 ImageProjectionInclusion 7.3-18 ImagesSet 7.2-7 IncludeInProductQuiver 4.17-4 IncomingArrowsOfVertex 3.8-1 IndecInjectiveModules 6.5-3 IndecProjectiveModules 6.5-4 InDegreeOfVertex 3.8-3 InfConcatenation 10.2-41 InfList 10.2-42 InfListType 10.2-10 InfoGroebnerBasis 5.1-1 InfoQuiver 3.1-1 InitialValue 10.2-16 InjDimension 8.1-14 InjDimensionOfModule 8.1-15 InjectiveEnvelope 8.1-16 InjectiveResolution 11.1-1 IntegersList 10.2-43 IntersectionOfSubmodules 6.4-18 IrreducibleMorphismsEndingIn 9.1-3 IrreducibleMorphismsStartingIn 9.1-3 IsABand 4.12-3 IsAcyclicQuiver 3.3-2 IsAdmissibleIdeal 4.8-1 IsAdmissibleQuotientOfPathAlgebra 4.11-1 IsARQuiverNumerical 13.3-2 IsArrow 3.6-3 IsBasicAlgebra 4.19-3 IsCanonicalAlgebra 4.11-4 IsCat 10.3-1 IsChainMap 10.7-1 IsCompleteGroebnerBasis 5.2-2 IsCompletelyReducedGroebnerBasis 5.2-1 IsConnectedQuiver 3.3-4 IsCotiltingModule 8.1-17 IsDirectSummand 6.4-19 IsDirectSumOfModules 6.4-20 IsDistributiveAlgebra 4.11-5 IsDomesticStringAlgebra 4.12-6 IsDynkinQuiver 3.3-6 IsElementaryAlgebra 4.19-4 IsElementOfQuotientOfPathAlgebra 4.14-1 IsEnvelopingAlgebra 4.17-12 IsExactInDegree 10.5-15 IsExactSequence 10.5-14 IsExceptionalModule 6.4-21 IsFiniteComplex 10.5-8 IsFiniteDimensional 4.11-3 IsFiniteGlobalDimensionAlgebra 4.11-6 IsFiniteTypeAlgebra 4.11-25 IsGentleAlgebra 4.11-7 IsGorensteinAlgebra 4.11-8 IsGroebnerBasis 5.2-3 IsHalfInfList 10.2-5 IsHereditaryAlgebra 4.11-9 IsHomogeneousGroebnerBasis 5.2-4 IsIdealInPathAlgebra 4.8-2 IsInAdditiveClosure 6.4-23 IsIndecomposableModule 6.4-22 IsInfiniteNumber 10.2-1 IsInfList 10.2-4 IsInjective 7.2-9 IsInjectiveComplex 11.1-3 IsInjectiveModule 6.4-24 IsIsomorphism 7.2-10 IsKroneckerAlgebra 4.11-10 IsLeftDivisible 6.7-3 IsLeftMinimal 7.2-11 IsLeftUniform 4.5-3 IsMonomialAlgebra 4.11-11 IsMonomialIdeal 4.8-3 IsNakayamaAlgebra 4.11-12 IsNormalForm 4.14-3 IsNthSyzygy 8.1-18 IsOmegaPeriodic 8.1-19 IsomorphicModules 6.4-25 IsomorphismOfModules 7.3-19 IsPath 3.6-1 IsPathAlgebra 4.3-1 IsPathAlgebraMatModule 6.2-1 IsPathAlgebraModule 6.7-4 IsPathAlgebraModuleHomomorphism 7.1-1 IsPathAlgebraVector 6.7-5 IsPrefixOfTipInTipIdeal 5.3-5 IsProjectiveComplex 11.1-2 IsProjectiveModule 6.4-26 IsQPAComplex 10.4-1 IsQuadraticIdeal 4.8-4 IsQuiver 3.3-1 IsQuiverAlgebra 4.11-13 IsQuiverProductDecomposition 4.17-3 IsQuiverVertex 3.6-2 IsQuotientOfPathAlgebra 4.11-2 IsRadicalSquareZeroAlgebra 4.11-14 IsRepeating 10.2-15 IsRightGroebnerBasis 5.4-1 IsRightMinimal 7.2-12 IsRightUniform 4.5-4 IsRigidModule 6.4-27 IsSchurianAlgebra 4.11-15 IsSelfinjectiveAlgebra 4.11-16 IsSemicommutativeAlgebra 4.11-17 IsSemisimpleAlgebra 4.11-18 IsSemisimpleModule 6.4-28 IsShortExactSequence 10.5-16 IsSimpleQPAModule 6.4-29 IsSpecialBiserialAlgebra 4.11-19 IsSpecialBiserialQuiver 4.15-9 IsSplitEpimorphism 7.2-13 IsSplitMonomorphism 7.2-14 IsStoringValues 10.2-13 IsStringAlgebra 4.11-20 IsSurjective 7.2-15 IsSymmetricAlgebra 4.11-21 IsTauPeriodic 9.1-4 IsTauRigidModule 6.4-30 IsTipReducedGroebnerBasis 5.2-5 IsTreeQuiver 3.3-5 IsTriangularReduced 4.11-22 IsTtiltingModule 8.1-20 IsUAcyclicQuiver 3.3-3 IsUniform 4.5-5 IsUnitForm 12.2-1 IsValidString 4.12-1 IsWeaklyNonnegativeUnitForm 12.2-3 IsWeaklyPositiveUnitForm 12.2-4 IsWeaklySymmetricAlgebra 4.11-23 IsZero 6.4-32 7.2-16 IsZeroComplex 10.4-2 IsZeroPath 3.6-4 Iterator 5.3-6 IyamaGenerator 8.1-21 Kernel 7.3-20 KernelInclusion 7.3-20 KernelOfWhat 7.2-17 KroneckerAlgebra 4.15-3 LeadingCoefficient 4.5-7 LeadingCoefficient (of PathAlgebraVector) 6.7-6 LeadingComponent 6.7-7 LeadingMonomial 4.5-8 LeadingPosition 6.7-8 LeadingTerm 4.5-6 LeadingTerm (of PathAlgebraVector) 6.7-9 LeftApproximationByAddM 8.1-28 LeftApproximationByAddTHat 8.1-22 LeftDivision 6.7-10 LeftFacMApproximation 8.1-23 LeftInverseOfHomomorphism 7.2-18 LeftMinimalVersion 7.3-21 LeftMutationOfCotiltingModuleComplement 8.1-24 LeftMutationOfTiltingModuleComplement 8.1-24 LeftSubMApproximation 8.1-25 LengthOfComplex 10.5-11 LengthOfPath 3.7-3 LiftingCompleteSetOfOrthogonalIdempotents 4.20-1 LiftingIdempotent 4.20-2 LiftingInclusionMorphisms 8.1-26 LiftingMorphismFromProjective 8.1-27 LocalARQuiver 4.12-8 LoewyLength 4.13-10 LowerBound 10.2-35 10.5-10 LowestKnownDegree 10.5-13 LowestKnownPosition 10.2-17 10.2-33 MakeHalfInfList 10.2-7 MakeInfList 10.2-23 MakeInfListFromHalfInfLists 10.2-22 MakeUniformOnRight 4.5-9 MappedExpression 4.5-10 MappingCone 10.7-10 MatricesOfPathAlgebraMatModuleHomomorphism 7.2-19 MatricesOfPathAlgebraModule 6.4-33 MatrixOfHomomorphismBetweenProjectives 7.3-22 MaximalCommonDirectSummand 6.4-34 MiddleEnd 10.2-28 MiddlePart 10.2-29 MiddleStart 10.2-27 MinimalGeneratingSetOfModule 6.4-36 MinimalLeftAddMApproximation 8.1-28 MinimalLeftApproximation 8.1-28 MinimalLeftFacMApproximation 8.1-23 MinimalLeftSubMApproximation 8.1-25 MinimalRightAddMApproximation 8.1-29 MinimalRightApproximation 8.1-29 MinimalRightFacMApproximation 8.1-42 MinimalRightSubMApproximation 8.1-44 ModulesOfDimVect 13.5-1 MorphismOfChainMap 10.7-6 MorphismOnCoKernel 8.1-31 MorphismOnImage 8.1-31 MorphismOnKernel 8.1-31 MorphismsOfChainMap 10.7-7 N_RigidModule 8.1-45 NakayamaAlgebra 4.15-4 NakayamaAutomorphism 4.13-11 NakayamaFunctorOfModule 6.6-5 NakayamaFunctorOfModuleHomomorphism 6.6-6 NakayamaPermutation 4.13-12 NegativeInfinity 10.2-3 NegativePart 10.2-31 NegativePartFrom 10.2-38 NeighborsOfVertex 3.8-5 NewValueCallback 10.2-14 Nontips 5.3-7 NontipSize 5.3-8 NthPowerOfArrowIdeal 4.7-4 NthSyzygy 8.1-32 NumberOfArrows 3.5-7 NumberOfComplementsOfAlmostCompleteCotiltingModule 8.1-33 NumberOfComplementsOfAlmostCompleteTiltingModule 8.1-33 NumberOfIndecomposables 13.3-3 NumberOfNonIsoDirSummands 6.4-35 NumberOfProjectives 13.3-4 NumberOfVertices 3.5-6 ObjectOfComplex 10.5-2 OppositeAlgebraHomomorphism 4.16-4 OppositeNakayamaFunctorOfModule 6.6-7 OppositeNakayamaFunctorOfModuleHomomorphism 6.6-8 OppositePath 4.16-1 OppositePathAlgebra 4.16-2 OppositePathAlgebraElement 4.16-3 OppositeQuiver 3.5-9 OrbitCodim 13.4-5 OrbitDim 13.4-4 OrderedBy 3.2-3 OrderingOfAlgebra 4.4-3 OrderingOfQuiver 3.5-8 OrderOfNakayamaAutomorphism 4.13-13 OriginalPathAlgebra 4.14-6 OutDegreeOfVertex 3.8-4 OutgoingArrowsOfVertex 3.8-2 PartialOrderOfPoset 3.9-4 PathAlgebra 4.2-1 PathAlgebraOfMatModuleMap 7.2-20 PathAlgebraVector 6.7-14 PathsOfLengthTwo 4.7-3 Poset, for a list P and a set of relations rel 3.9-1 PosetAlgebra 4.15-6 PosetOfPosetAlgebra 4.15-7 PositiveInfinity 10.2-2 PositivePart 10.2-30 PositivePartFrom 10.2-37 PositiveRootsOfUnitForm 12.2-5 PredecessorOfModule 9.1-5 PreImagesRepresentative 7.2-21 PreprojectiveAlgebra 4.19-5 4.19-5 PrimitiveIdempotents 4.19-6 PrintMultiplicityVector 13.4-8 PrintMultiplicityVectors 13.4-9 ProductOfIdeals 4.9-1 ProjDimension 8.1-34 ProjDimensionOfModule 8.1-35 ProjectFromProductQuiver 4.17-5 ProjectiveCover 8.1-36 ProjectivePathAlgebraPresentation 6.7-15 ProjectiveResolution 11.1-4 ProjectiveResolutionOfComplex 11.2-1 ProjectiveResolutionOfPathAlgebraModule 8.1-37 ProjectiveResolutionOfSimpleModuleOverEndo 8.1-38 ProjectiveToInjectiveComplex 11.2-2 ProjectiveToInjectiveFiniteComplex 11.2-2 PullBack 8.1-39 PushOut 8.1-40 QuadraticFormOfUnitForm 12.2-6 QuadraticPerpOfPathAlgebraIdeal 4.9-2 Quiver, adjacenymatrix 3.2-1 QuiverAlgebraOfAmodAeA 4.18-1 QuiverAlgebraOfeAe 4.18-2 QuiverOfPathAlgebra 4.4-2 QuiverProduct 4.17-1 QuiverProductDecomposition 4.17-2 RadicalOfModule 6.4-37 RadicalOfModuleInclusion 7.3-24 RadicalRightApproximationByAddM 8.1-30 RadicalSeries 6.4-38 RadicalSeriesOfAlgebra 4.13-14 Range 7.2-22 ReadAlgebra 4.21-1 RejectOfModule 7.3-25 RelationsOfAlgebra 4.5-12 RepeatingList 10.2-11 RestrictionViaAlgebraHomomorphism 6.6-9 RestrictionViaAlgebraHomomorphismMap 6.6-10 RightAlgebraModuleToPathAlgebraMatModule 6.1-2 RightApproximationByAddM 8.1-29 RightApproximationByPerpT 8.1-41 RightFacMApproximation 8.1-42 RightGroebnerBasis 5.4-2 RightGroebnerBasisOfIdeal 5.4-3 RightGroebnerBasisOfModule 6.7-16 RightInverseOfHomomorphism 7.2-23 RightMinimalVersion 7.3-23 RightModuleHomOverAlgebra 7.1-2 RightModuleOverPathAlgebra, no dimension vector 6.1-1 RightModuleOverPathAlgebraNC, no dimension vector 6.1-1 RightMutationOfCotiltingModuleComplement 8.1-43 RightMutationOfTiltingModuleComplement 8.1-43 RightProjectiveModule 6.7-1 RightSubMApproximation 8.1-44 SaveAlgebra 4.21-2 SeparatedQuiver 3.5-13 Shift 10.2-19 10.2-39 10.6-1 ShiftUnsigned 10.6-2 ShortExactSequence 10.4-7 SimpleModules 6.5-5 SimpleTensor 4.17-8 Size 3.9-2 SocleOfModule 6.4-40 SocleOfModuleInclusion 7.3-26 SocleSeries 6.4-39 Source 7.2-24 SourceOfPath 3.7-1 Splice 10.2-40 StalkComplex 10.4-6 StarOfMapBetweenDecompProjectives 11.2-5 StarOfMapBetweenIndecProjectives 11.2-5 StarOfMapBetweenProjectives 11.2-5 StarOfModule 6.6-11 StarOfModuleHomomorphism 6.6-12 StartPosition 10.2-8 StringsLessThan 4.12-2 SubRepresentation 6.4-41 SubRepresentationInclusion 7.3-27 SumOfSubmodules 6.4-42 SupportModuleElement 6.4-43 SymmetricMatrixOfUnitForm 12.2-7 SyzygyCosyzygyTruncation 10.6-9 SyzygyTruncation 10.6-7 TargetOfPath 3.7-2 TargetVertex 6.7-17 TauOfComplex 11.2-3 TensorAlgebrasInclusion 4.17-7 TensorProductDecomposition 4.17-9 TensorProductOfAlgebras 4.17-6 TensorProductOfModules 6.6-13 TiltingModule 8.1-46 Tip 4.5-6 TipCoefficient 4.5-7 TipMonomial 4.5-8 TipReduce 5.3-9 TipReduceGroebnerBasis 5.3-10 TitsUnitFormOfAlgebra 12.2-8 TopOfModule 6.4-44 TopOfModuleProjection 7.3-28 TraceOfModule 7.3-29 TransposeOfDual 6.6-14 TransposeOfModule 6.6-16 TransposeOfModuleHomomorphism 6.6-17 TrD 6.6-14 6.6-15 TrivialExtensionOfQuiverAlgebra 4.17-15 TrivialExtensionOfQuiverAlgebraProjection 4.17-16 TruncatedPathAlgebra 4.15-8 UnderlyingSet 3.9-3 UniformGeneratorsOfModule 6.7-18 UnitForm 12.2-10 UpperBound 10.2-34 10.5-9 Vectorize 6.7-19 VertexPosition 4.5-11 VerticesOfQuiver 3.5-2 WalkOfPath 3.7-4 YonedaProduct 10.6-3 Zero 7.2-25 ZeroChainMap 10.7-3 ZeroComplex 10.4-4 ZeroMapping 7.2-26 ZeroModule 6.5-6
generated by GAPDoc2HTML