* (for bipartitions) 3.4 * (for PBRs) 4.4 * (for matrices over a semiring) 5.2 * (for Rees (0-)matrix semigroup isomorphisms by triples) 14.3-7 < (for bipartitions) 3.4 < (for PBRs) 4.4 < (for matrices over a semiring) 5.2 < (for Rees (0-)matrix semigroup isomorphisms by triples) 14.3-7 = (for bipartitions) 3.4 = (for PBRs) 4.4 = (for matrices over a semiring) 5.2 = (for Rees (0-)matrix semigroup isomorphisms by triples) 14.3-7 \<, for Green's classes 10.3-1 \in 5.3-3 ^ (for Rees (0-)matrix semigroup isomorphisms by triples) 14.3-7 AnnularJonesMonoid 7.3-5 AntiIsomorphismDualFpMonoid 6.5-9 AntiIsomorphismDualFpSemigroup 6.5-9 AntiIsomorphismDualSemigroup 8.2-4 ApsisMonoid 7.3-11 AsBipartition 3.3-1 AsBlockBijection 3.3-2 AsBooleanMat 5.3-2 AsCongruenceByWangPair 13.8-3 AsInverseSemigroupCongruenceByKernelTrace 13.7-3 AsList 5.1-10 AsListCanonical 11.1-1 AsMatrix, for a filter and a matrix 5.1-6 AsMonoid 6.5-4 AsMutableList 5.1-10 AsPartialPerm, for a bipartition 3.3-4 AsPBR 4.3-1 AsPermutation, for a bipartition 3.3-5 AsSemigroup 6.5-3 AsSemigroupCongruenceByGeneratingPairs 13.6-6 AsSemigroupHomomorphismByFunction, for a semigroup homomorphism by images 14.1-6 AsSemigroupHomomorphismByImages, for a semigroup homomorphism by function 14.1-5 AsSemigroupIsomorphismByFunction, for a semigroup homomorphism by images 14.2-11 AsTransformation, for a bipartition 3.3-3 AutomorphismGroup, for a semigroup 14.2-7 Bipartition 3.2-1 BipartitionByIntRep 3.2-2 Bitranslation, for IsBitranslationsSemigroup, IsLeftTranslation, IsRightTranslation 18.1-6 BlistNumber 5.3-7 BLOCKS_NC 3.6-2 BooleanMat 5.3-1 BooleanMatNumber 5.3-6 BrandtSemigroup 7.8-6 BrauerMonoid 7.3-2 CanonicalBlocks 3.5-18 CanonicalBooleanMat 5.3-8 CanonicalForm, for a free inverse semigroup element 7.11-6 CanonicalMultiplicationTable 14.2-3 CanonicalMultiplicationTablePerm 14.2-4 CanonicalReesMatrixSemigroup 14.3-6 CanonicalReesZeroMatrixSemigroup 14.3-6 CanonicalTransformation 11.11-9 CanUseFroidurePin 6.1-4 CanUseGapFroidurePin 6.1-4 CanUseLibsemigroupsFroidurePin 6.1-4 CatalanMonoid 7.1-1 CharacterTableOfInverseSemigroup 11.14-10 ClosureInverseMonoid 6.4-1 ClosureInverseSemigroup 6.4-1 ClosureMonoid 6.4-1 ClosureSemigroup 6.4-1 CodomainOfBipartition 3.5-11 ComponentRepsOfPartialPermSemigroup 11.12-1 ComponentRepsOfTransformationSemigroup 11.11-1 ComponentsOfPartialPermSemigroup 11.12-2 ComponentsOfTransformationSemigroup 11.11-2 CompositionMapping2, for IsRMSIsoByTriple 14.3-4 CongruenceByWangPair 13.8-2 CongruencesOfPoset 13.4-7 CongruencesOfSemigroup, for a semigroup 13.4-1 ContentOfFreeBandElement 7.9-7 ContentOfFreeBandElementCollection 7.9-7 CrossedApsisMonoid 7.3-11 CyclesOfPartialPerm 11.12-3 CyclesOfPartialPermSemigroup 11.12-4 CyclesOfTransformationSemigroup 11.11-3 DClass 10.1-2 DClasses 10.1-4 DClassNC 10.1-3 DClassOfHClass 10.1-1 DClassOfLClass 10.1-1 DClassOfRClass 10.1-1 DClassReps 10.1-5 DegreeOfBipartition 3.5-1 DegreeOfBipartitionCollection 3.5-1 DegreeOfBipartitionSemigroup 3.8-5 DegreeOfBlocks 3.6-5 DegreeOfPBR 4.5-2 DegreeOfPBRCollection 4.5-2 DegreeOfPBRSemigroup 4.6-2 DigraphOfAction, for a transformation semigroup, list, and action 11.11-4 DigraphOfActionOnPoints, for a transformation semigroup 11.11-5 DimensionOfMatrixOverSemiring 5.1-3 DimensionOfMatrixOverSemiringCollection 5.1-4 DirectProduct 8.1-1 DirectProductOp 8.1-1 DomainOfBipartition 3.5-10 DotLeftCayleyDigraph 16.1-4 DotRightCayleyDigraph 16.1-4 DotSemilatticeOfIdempotents 16.1-3 DotString 16.1-1 DualSemigroup 8.2-1 DualSymmetricInverseMonoid 7.3-7 DualSymmetricInverseSemigroup 7.3-7 ElementOfFpMonoid 15.2-3 ElementOfFpSemigroup 15.2-2 ELM_LIST (for Rees (0-)matrix semigroup isomorphisms by triples) 14.3-7 ELM_LIST, for IsRMSIsoByTriple 14.3-3 EmptyPBR 4.2-3 EndomorphismMonoid, for a digraph 7.1-6 EndomorphismsPartition 7.1-2 Enumerate 11.1-3 EnumeratorCanonical 11.1-1 EqualInFreeBand 7.9-8 EquivalenceRelationCanonicalLookup, for an equivalence relation over a finite semigroup 13.3-6 EquivalenceRelationCanonicalPartition 13.3-7 EquivalenceRelationLookup, for an equivalence relation over a finite semigroup 13.3-5 EUnitaryInverseCover 11.14-11 EvaluateWord 11.5-1 ExtRepOfObj, for a bipartition 3.5-3 FactorisableDualSymmetricInverseMonoid 7.3-8 Factorization 11.5-2 FixedPointsOfTransformationSemigroup, for a transformation semigroup 11.11-6 FpTietzeIsomorphism 15.8-4 FreeBand, for a given rank 7.9-1 FreeInverseSemigroup, for a given rank 7.11-1 FreeMonoidAndAssignGeneratorVars 15.2-4 FreeSemigroupAndAssignGeneratorVars 15.2-4 FullBooleanMatMonoid 7.6-1 FullMatrixMonoid 7.5-1 FullPBRMonoid 7.4-1 FullTropicalMaxPlusMonoid 7.7-1 FullTropicalMinPlusMonoid 7.7-2 GeneralLinearMonoid 7.5-1 GeneratingCongruencesOfLattice 13.8-4 Generators 11.6-1 GeneratorsOfSemigroupIdeal 9.2-1 GeneratorsOfStzPresentation 15.3-3 GeneratorsSmallest, for a semigroup 11.6-5 GLM 7.5-1 GossipMonoid 7.6-5 GraphInverseSemigroup 7.10-1 GraphOfGraphInverseSemigroup 7.10-5 GreensDClasses 10.1-4 GreensDClassOfElement 10.1-2 GreensDClassOfElementNC 10.1-3 GreensHClasses 10.1-4 GreensHClassOfElement 10.1-2 GreensHClassOfElementNC 10.1-3 GreensJClasses 10.1-4 GreensLClasses 10.1-4 GreensLClassOfElement 10.1-2 GreensLClassOfElementNC 10.1-3 GreensRClasses 10.1-4 GreensRClassOfElement 10.1-2 GreensRClassOfElementNC 10.1-3 GroupHClass 10.4-1 GroupOfUnits 11.8-1 HallMonoid 7.6-4 HClass 10.1-2 HClasses 10.1-4 HClassNC 10.1-3 HClassReps 10.1-5 HomomorphismsOfStrongSemilatticeOfSemigroups 8.3-7 Ideals, for a semigroup 9.1-2 IdempotentGeneratedSubsemigroup 11.9-3 Idempotents 11.9-1 IdentityBipartition 3.2-3 IdentityPBR 4.2-4 ImagesElm, for IsRMSIsoByTriple 14.3-5 ImageSetOfTranslation, for IsSemigroupTranslation 18.1-16 ImagesRepresentative, for IsRMSIsoByTriple 14.3-5 IndecomposableElements 11.6-6 IndexOfVertexOfGraphInverseSemigroup 7.10-9 IndexPeriodOfSemigroupElement 11.4-1 InfoSemigroups 2.5-1 InjectionNormalizedPrincipalFactor 10.4-7 InjectionPrincipalFactor 10.4-7 InnerLeftTranslations, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-13 InnerRightTranslations, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-13 InnerTranslationalHull, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-14 Integers 5.1-8 IntRepOfBipartition 3.5-4 InverseMonoidByGenerators 6.2-1 InverseOp 5.6-1 InverseSemigroupByGenerators 6.2-1 InverseSemigroupCongruenceByKernelTrace 13.7-2 InverseSubsemigroupByProperty 6.4-3 IrredundantGeneratingSubset 11.6-3 IsActingSemigroup 6.1-2 IsAntiSymmetricBooleanMat 5.3-13 IsAperiodicSemigroup 12.1-19 IsBand 12.1-1 IsBipartition 3.1-1 IsBipartitionCollColl 3.1-2 IsBipartitionCollection 3.1-2 IsBipartitionMonoid 3.8-1 IsBipartitionPBR 4.5-8 IsBipartitionSemigroup 3.8-1 IsBitranslation, for IsAssociativeElement and IsMultiplicativeElementWithOne 18.1-2 IsBitranslationCollection 18.1-3 IsBlockBijection 3.5-16 IsBlockBijectionMonoid 3.8-2 IsBlockBijectionPBR 4.5-8 IsBlockBijectionSemigroup 3.8-2 IsBlockGroup 12.1-2 IsBlocks 3.6-1 IsBooleanMat 5.1-8 IsBooleanMatCollColl 5.1-9 IsBooleanMatCollection 5.1-9 IsBooleanMatMonoid 5.7-2 IsBooleanMatSemigroup 5.7-1 IsBrandtSemigroup 12.2-2 IsCliffordSemigroup 12.2-1 IsColTrimBooleanMat 5.3-9 IsCombinatorialSemigroup 12.1-19 IsCommutativeSemigroup 12.1-3 IsCompletelyRegularSemigroup 12.1-4 IsCompletelySimpleSemigroup 12.1-22 IsCongruenceByWangPair 13.8-1 IsCongruenceClass 13.3-1 IsCongruenceFreeSemigroup 12.1-5 IsCongruencePoset 13.4-4 IsConnectedTransformationSemigroup, for a transformation semigroup 11.11-10 IsDTrivial 12.1-19 IsDualSemigroupElement 8.2-3 IsDualSemigroupRep 8.2-2 IsDualTransBipartition 3.5-13 IsDualTransformationPBR 4.5-10 IsEmptyPBR 4.5-5 IsEnumerated 11.1-4 IsEquivalenceBooleanMat 5.3-16 IsEUnitaryInverseSemigroup 12.2-3 IsFactorisableInverseMonoid 12.2-6 IsFinite 5.7-3 IsFInverseMonoid 12.2-5 IsFInverseSemigroup 12.2-4 IsFreeBand, for a given semigroup 7.9-3 IsFreeBandCategory 7.9-2 IsFreeBandElement 7.9-4 IsFreeBandElementCollection 7.9-5 IsFreeBandSubsemigroup 7.9-6 IsFreeInverseSemigroup 7.11-3 IsFreeInverseSemigroupCategory 7.11-2 IsFreeInverseSemigroupElement 7.11-4 IsFreeInverseSemigroupElementCollection 7.11-5 IsFullMatrixMonoid 7.5-3 IsGeneralLinearMonoid 7.5-3 IsGraphInverseSemigroup 7.10-4 IsGraphInverseSemigroupElement 7.10-4 IsGraphInverseSemigroupElementCollection 7.10-6 IsGraphInverseSubsemigroup 7.10-7 IsGreensClassNC 10.3-3 IsGreensDGreaterThanFunc 10.1-12 IsGroupAsSemigroup 12.1-7 IsHTrivial 12.1-19 IsIdempotentGenerated 12.1-8 IsIdentityPBR 4.5-6 IsIntegerMatrixMonoid 5.7-2 IsIntegerMatrixSemigroup 5.7-1 IsInverseSemigroupCongruenceByKernelTrace 13.7-1 IsInverseSemigroupCongruenceClassByKernelTrace 13.7-6 IsIsomorphicSemigroup 14.2-1 IsJoinIrreducible 12.2-7 IsLeftCongruenceClass 13.3-2 IsLeftSemigroupCongruence 13.1-2 IsLeftSimple 12.1-9 IsLeftTranslation, for IsSemigroupTranslation 18.1-1 IsLeftTranslationCollection 18.1-3 IsLeftZeroSemigroup 12.1-10 IsLinkedTriple 13.6-5 IsLTrivial 12.1-19 IsMajorantlyClosed 12.2-8 IsMatrixOverFiniteField 5.1-8 IsMatrixOverFiniteFieldCollColl 5.1-9 IsMatrixOverFiniteFieldCollection 5.1-9 IsMatrixOverFiniteFieldMonoid 5.7-2 IsMatrixOverFiniteFieldSemigroup 5.7-1 IsMatrixOverSemiring 5.1-1 IsMatrixOverSemiringCollColl 5.1-2 IsMatrixOverSemiringCollection 5.1-2 IsMatrixOverSemiringMonoid 5.7-2 IsMatrixOverSemiringSemigroup 5.7-1 IsMaximalSubsemigroup 11.10-3 IsMaxPlusMatrix 5.1-8 IsMaxPlusMatrixCollColl 5.1-9 IsMaxPlusMatrixCollection 5.1-9 IsMaxPlusMatrixMonoid 5.7-2 IsMaxPlusMatrixSemigroup 5.7-1 IsMcAlisterTripleSemigroup 8.4-1 IsMcAlisterTripleSemigroupElement 8.4-7 IsMinPlusMatrix 5.1-8 IsMinPlusMatrixCollColl 5.1-9 IsMinPlusMatrixCollection 5.1-9 IsMinPlusMatrixMonoid 5.7-2 IsMinPlusMatrixSemigroup 5.7-1 IsMonogenicInverseMonoid 12.2-10 IsMonogenicInverseSemigroup 12.2-9 IsMonogenicMonoid 12.1-12 IsMonogenicSemigroup 12.1-11 IsMonoidAsSemigroup 12.1-13 IsMTSE 8.4-7 IsNTPMatrix 5.1-8 IsNTPMatrixCollColl 5.1-9 IsNTPMatrixCollection 5.1-9 IsNTPMatrixMonoid 5.7-2 IsNTPMatrixSemigroup 5.7-1 IsomorphismMonoid 6.5-2 IsomorphismPermGroup 6.5-5 IsomorphismReesMatrixSemigroup, for a D-class 10.4-7 IsomorphismReesMatrixSemigroupOverPermGroup 6.5-8 IsomorphismReesZeroMatrixSemigroup 6.5-8 IsomorphismReesZeroMatrixSemigroupOverPermGroup 6.5-8 IsomorphismSemigroup 6.5-1 IsomorphismSemigroups 14.2-6 IsOntoBooleanMat 5.3-14 IsOrthodoxSemigroup 12.1-14 IsPartialOrderBooleanMat 5.3-15 IsPartialPermBipartition 3.5-15 IsPartialPermBipartitionMonoid 3.8-3 IsPartialPermBipartitionSemigroup 3.8-3 IsPartialPermPBR 4.5-11 IsPBR 4.1-1 IsPBRCollColl 4.1-2 IsPBRCollection 4.1-2 IsPBRMonoid 4.6-1 IsPBRSemigroup 4.6-1 IsPermBipartition 3.5-14 IsPermBipartitionGroup 3.8-4 IsPermPBR 4.5-12 IsRectangularBand 12.1-15 IsRectangularGroup 12.1-16 IsReesCongruenceClass 13.9-2 IsReflexiveBooleanMat 5.3-11 IsRegularGreensClass 10.3-2 IsRegularSemigroup 12.1-17 IsRightCongruenceClass 13.3-3 IsRightSemigroupCongruence 13.1-3 IsRightSimple 12.1-9 IsRightTranslation, for IsSemigroupTranslation 18.1-1 IsRightTranslationCollection 18.1-3 IsRightZeroSemigroup 12.1-18 IsRMSCongruenceByLinkedTriple 13.6-1 IsRMSCongruenceClassByLinkedTriple 13.6-3 IsRMSIsoByTriple 14.3-1 IsRowTrimBooleanMat 5.3-9 IsRTrivial 12.1-19 IsRZMSCongruenceByLinkedTriple 13.6-1 IsRZMSCongruenceClassByLinkedTriple 13.6-3 IsRZMSIsoByTriple 14.3-1 IsSelfDualSemigroup 12.1-29 IsSemiband 12.1-8 IsSemigroupCongruence 13.1-1 IsSemigroupHomomorphismByFunction 14.1-4 IsSemigroupHomomorphismByImages 14.1-3 IsSemigroupIsomorphismByFunction 14.2-10 IsSemigroupTranslation, for IsAssociativeElement and IsMultiplicativeElementWithOne 18.1-1 IsSemigroupTranslationCollection 18.1-3 IsSemigroupWithAdjoinedZero 12.1-20 IsSemilattice 12.1-21 IsSimpleSemigroup 12.1-22 IsSSSE 8.3-3 IsStrongSemilatticeOfSemigroups 8.3-4 IsStzPresentation 15.3-2 IsSubrelation 13.5-1 IsSuperrelation 13.5-2 IsSurjectiveSemigroup 12.1-6 IsSymmetricBooleanMat 5.3-10 IsSynchronizingSemigroup, for a transformation semigroup 12.1-23 IsTorsion 5.7-4 IsTotalBooleanMat 5.3-14 IsTransBipartition 3.5-12 IsTransformationBooleanMat 5.3-17 IsTransformationPBR 4.5-9 IsTransitive, for a transformation semigroup and a pos int 11.11-7 IsTransitiveBooleanMat 5.3-12 IsTrimBooleanMat 5.3-9 IsTropicalMatrix 5.1-8 IsTropicalMatrixCollection 5.1-9 IsTropicalMatrixMonoid 5.7-2 IsTropicalMatrixSemigroup 5.7-1 IsTropicalMaxPlusMatrix 5.1-8 IsTropicalMaxPlusMatrixCollColl 5.1-9 IsTropicalMaxPlusMatrixCollection 5.1-9 IsTropicalMaxPlusMatrixMonoid 5.7-2 IsTropicalMaxPlusMatrixSemigroup 5.7-1 IsTropicalMinPlusMatrix 5.1-8 IsTropicalMinPlusMatrixCollColl 5.1-9 IsTropicalMinPlusMatrixCollection 5.1-9 IsTropicalMinPlusMatrixMonoid 5.7-2 IsTropicalMinPlusMatrixSemigroup 5.7-1 IsUniformBlockBijection 3.5-17 IsUnitRegularMonoid 12.1-24 IsUniversalPBR 4.5-7 IsUniversalSemigroupCongruence 13.10-1 IsUniversalSemigroupCongruenceClass 13.10-2 IsVertex, for a graph inverse semigroup element 7.10-3 IsZeroGroup 12.1-25 IsZeroRectangularBand 12.1-26 IsZeroSemigroup 12.1-27 IsZeroSimpleSemigroup 12.1-28 IteratorCanonical 11.1-1 IteratorFromGeneratorsFile 17.1-3 IteratorFromMultiplicationTableFile 17.2-3 IteratorOfDClasses 10.2-2 IteratorOfDClassReps 10.2-1 IteratorOfHClassReps 10.2-1 IteratorOfLClassReps 10.2-1 IteratorOfLeftCongruences, for a semigroup 13.4-13 IteratorOfRClasses 10.2-2 IteratorOfRightCongruences, for a semigroup 13.4-13 JClasses 10.1-4 JoinIrreducibleDClasses 11.14-2 JoinLeftSemigroupCongruences 13.5-4 JoinRightSemigroupCongruences 13.5-4 JoinSemigroupCongruences 13.5-4 JoinSemilatticeOfCongruences, for a congruence poset and a function 13.4-10 JonesMonoid 7.3-3 KernelOfSemigroupCongruence 13.7-4 KernelOfSemigroupHomomorphism 14.1-7 LargestElementSemigroup 11.11-8 LatticeOfCongruences, for a semigroup 13.4-5 LatticeOfLeftCongruences, for a semigroup 13.4-5 LatticeOfRightCongruences, for a semigroup 13.4-5 LClass 10.1-2 LClasses 10.1-4 LClassNC 10.1-3 LClassOfHClass 10.1-1 LClassReps 10.1-5 LeftBlocks 3.5-6 LeftCayleyDigraph 11.2-1 LeftCongruencesOfSemigroup, for a semigroup 13.4-1 LeftInverse, for a matrix over finite field 5.4-2 LeftOne, for a bipartition 3.2-4 LeftPartOfBitranslation 18.1-4 LeftProjection 3.2-4 LeftSemigroupCongruence 13.2-2 LeftTranslation, for IsLeftTranslationsSemigroup, IsGeneralMapping 18.1-5 LeftTranslations, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-10 LeftTranslationsSemigroupOfFamily, for IsFamily 18.1-8 LeftZeroSemigroup 7.8-5 Length 15.3-6 LengthOfLongestDClassChain 10.1-11 MajorantClosure 11.14-3 Matrix, for a filter and a matrix 5.1-5 MaximalDClasses 10.1-7 MaximalLClasses 10.1-7 MaximalRClasses 10.1-7 MaximalSubsemigroups, for a finite semigroup 11.10-1 McAlisterTripleSemigroup 8.4-2 McAlisterTripleSemigroupAction 8.4-6 McAlisterTripleSemigroupElement 8.4-8 McAlisterTripleSemigroupGroup 8.4-3 McAlisterTripleSemigroupPartialOrder 8.4-4 McAlisterTripleSemigroupSemilattice 8.4-5 MeetLeftSemigroupCongruences 13.5-3 MeetRightSemigroupCongruences 13.5-3 MeetSemigroupCongruences 13.5-3 MinimalCongruences, for a congruence poset 13.4-11 MinimalCongruencesOfSemigroup, for a semigroup 13.4-2 MinimalDClass 10.1-6 MinimalFactorization 11.5-3 MinimalFaithfulTransformationDegree 14.2-13 MinimalIdeal 11.7-1 MinimalIdealGeneratingSet 9.2-2 MinimalInverseMonoidGeneratingSet 11.6-4 MinimalInverseSemigroupGeneratingSet 11.6-4 MinimalLeftCongruencesOfSemigroup, for a semigroup 13.4-2 MinimalMonoidGeneratingSet 11.6-4 MinimalRightCongruencesOfSemigroup, for a semigroup 13.4-2 MinimalSemigroupGeneratingSet 11.6-4 MinimalWord, for free inverse semigroup element 7.11-7 MinimumGroupCongruence 13.7-7 Minorants 11.14-4 ModularPartitionMonoid 7.3-10 MonogenicSemigroup 7.8-2 MotzkinMonoid 7.3-6 MTSE 8.4-8 MultiplicativeNeutralElement, for an H-class 10.4-5 MultiplicativeZero 11.7-3 MunnSemigroup 7.2-1 NambooripadLeqRegularSemigroup 11.15-1 NambooripadPartialOrder 11.15-2 NaturalLeqBlockBijection 3.4-3 NaturalLeqInverseSemigroup 11.14-1 NaturalLeqPartialPermBipartition 3.4-2 NonTrivialEquivalenceClasses 13.3-4 NonTrivialFactorization 11.5-4 NormalizedPrincipalFactor 10.4-8 NormalizeSemigroup 5.7-5 NrBitranslations, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-12 NrBlocks, for a bipartition 3.5-9 NrDClasses 10.1-9 NrHClasses 10.1-9 NrIdempotents 11.9-2 NrLClasses 10.1-9 NrLeftBlocks 3.5-7 NrLeftTranslations, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-12 NrMaximalSubsemigroups 11.10-2 NrRClasses 10.1-9 NrRegularDClasses 10.1-8 NrRightBlocks 3.5-8 NrRightTranslations, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-12 NrTransverseBlocks, for a bipartition 3.5-2 NumberBlist 5.3-7 NumberBooleanMat 5.3-6 NumberOfLeftCongruences, for a semigroup 13.4-12 NumberOfRightCongruences, for a semigroup 13.4-12 NumberPBR 4.5-4 OnBlist 5.3-4 OnLeftBlocks 3.7-2 OnLeftCongruenceClasses 13.3-8 OnMultiplicationTable 14.2-5 OnRightBlocks 3.7-1 OnRightCongruenceClasses 13.3-9 Order 5.5-3 OrderAntiEndomorphisms 7.1-5 OrderEndomorphisms, monoid of order preserving transformations 7.1-5 ParseRelations 15.2-1 PartialBrauerMonoid 7.3-2 PartialDualSymmetricInverseMonoid 7.3-7 PartialJonesMonoid 7.3-4 PartialOrderAntiEndomorphisms 7.1-5 PartialOrderEndomorphisms 7.1-5 PartialOrderOfDClasses 10.1-10 PartialOrderOfLClasses 10.1-10 PartialOrderOfRClasses 10.1-10 PartialPermLeqBipartition 3.4-1 PartialTransformationMonoid 7.1-3 PartialUniformBlockBijectionMonoid 7.3-8 PartitionMonoid 7.3-1 PBR 4.2-1 PBRNumber 4.5-4 PeriodNTPMatrix 5.1-12 PermLeftQuoBipartition 3.4-4 PlanarModularPartitionMonoid 7.3-10 PlanarPartitionMonoid 7.3-9 PlanarUniformBlockBijectionMonoid 7.3-8 PODI, monoid of order preserving or reversing partial perms 7.2-3 POI, monoid of order preserving partial perms 7.2-3 POPI, monoid of orientation preserving partial perms 7.2-3 PORI, monoid of orientation preserving or reversing partial perms 7.2-3 PosetOfCongruences 13.4-9 PosetOfPrincipalCongruences, for a semigroup 13.4-6 PosetOfPrincipalLeftCongruences, for a semigroup 13.4-6 PosetOfPrincipalRightCongruences, for a semigroup 13.4-6 PositionCanonical 11.1-2 PrimitiveIdempotents 11.14-5 PrincipalCongruencesOfSemigroup, for a semigroup 13.4-3 PrincipalFactor 10.4-8 PrincipalLeftCongruencesOfSemigroup, for a semigroup 13.4-3 PrincipalRightCongruencesOfSemigroup, for a semigroup 13.4-3 ProjectionFromBlocks 3.6-6 RadialEigenvector 5.6-2 Random, for a semigroup 11.3-1 RandomBipartition 3.2-7 RandomBlockBijection 3.2-7 RandomInverseMonoid 6.6-1 RandomInverseSemigroup 6.6-1 RandomMatrix, for a filter and a matrix 5.1-7 RandomMonoid 6.6-1 RandomPBR 4.2-2 RandomSemigroup 6.6-1 RandomWord, for two integers 15.1-2 Range, for a graph inverse semigroup element 7.10-2 RankOfBipartition 3.5-2 RankOfBlocks 3.6-4 RClass 10.1-2 RClasses 10.1-4 RClassNC 10.1-3 RClassOfHClass 10.1-1 RClassReps 10.1-5 ReadGenerators 17.1-1 ReadMultiplicationTable 17.2-1 RectangularBand 7.8-3 ReflexiveBooleanMatMonoid 7.6-3 RegularBooleanMatMonoid 7.6-2 RegularDClasses 10.1-8 RelationsOfStzPresentation 15.3-4 RepresentativeOfMinimalDClass 11.7-2 RepresentativeOfMinimalIdeal 11.7-2 RightBlocks 3.5-5 RightCayleyDigraph 11.2-1 RightCongruencesOfSemigroup, for a semigroup 13.4-1 RightCosetsOfInverseSemigroup 11.14-6 RightInverse, for a matrix over finite field 5.4-2 RightOne, for a bipartition 3.2-5 RightPartOfBitranslation 18.1-4 RightProjection 3.2-5 RightSemigroupCongruence 13.2-3 RightTranslation, for IsRightTranslationsSemigroup, IsGeneralMapping 18.1-5 RightTranslations, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-10 RightTranslationsSemigroupOfFamily, for IsFamily 18.1-8 RightZeroSemigroup 7.8-5 RMSCongruenceByLinkedTriple 13.6-2 RMSCongruenceClassByLinkedTriple 13.6-4 RMSIsoByTriple 14.3-2 RMSNormalization 6.5-7 RookMonoid 7.2-2 RookPartitionMonoid 7.3-1 RowSpaceBasis, for a matrix over finite field 5.4-1 RowSpaceTransformation, for a matrix over finite field 5.4-1 RowSpaceTransformationInv, for a matrix over finite field 5.4-1 RZMSCongruenceByLinkedTriple 13.6-2 RZMSCongruenceClassByLinkedTriple 13.6-4 RZMSConnectedComponents 11.13-2 RZMSDigraph 11.13-1 RZMSIsoByTriple 14.3-2 RZMSNormalization 6.5-6 SameMinorantsSubgroup 11.14-7 SchutzenbergerGroup 10.4-2 SemigroupCongruence 13.2-1 SemigroupHomomorphismByFunction 14.1-2 SemigroupHomomorphismByFunctionNC 14.1-2 SemigroupHomomorphismByImages, for a semigroup and two lists 14.1-1 SemigroupIdeal 9.1-1 SemigroupIdealOfReesCongruence 13.9-1 SemigroupIsomorphismByFunction 14.2-9 SemigroupIsomorphismByFunctionNC 14.2-9 SemigroupIsomorphismByImages, for a semigroup and two list 14.2-8 SEMIGROUPS.DefaultOptionsRec 6.3-1 SemigroupsOfStrongSemilatticeOfSemigroups 8.3-6 SemigroupsTestAll 2.4-4 SemigroupsTestExtreme 2.4-3 SemigroupsTestInstall 2.4-1 SemigroupsTestStandard 2.4-2 SemilatticeOfStrongSemilatticeOfSemigroups 8.3-5 SimplifiedFpSemigroup 15.8-2 SimplifyFpSemigroup 15.8-1 SingularApsisMonoid 7.3-11 SingularBrauerMonoid 7.3-2 SingularCrossedApsisMonoid 7.3-11 SingularDualSymmetricInverseMonoid 7.3-7 SingularFactorisableDualSymmetricInverseMonoid 7.3-8 SingularJonesMonoid 7.3-3 SingularModularPartitionMonoid 7.3-10 SingularOrderEndomorphisms 7.1-5 SingularPartitionMonoid 7.3-1 SingularPlanarModularPartitionMonoid 7.3-10 SingularPlanarPartitionMonoid 7.3-9 SingularPlanarUniformBlockBijectionMonoid 7.3-8 SingularTransformationMonoid 7.1-4 SingularTransformationSemigroup 7.1-4 SingularUniformBlockBijectionMonoid 7.3-8 SLM 7.5-2 SmallerDegreePartialPermRepresentation 11.14-8 SmallerDegreeTransformationRepresentation 14.2-12 SmallestElementSemigroup 11.11-8 SmallestIdempotentPower 11.4-2 SmallestMultiplicationTable 14.2-2 SmallGeneratingSet 11.6-2 SmallInverseMonoidGeneratingSet 11.6-2 SmallInverseSemigroupGeneratingSet 11.6-2 SmallMonoidGeneratingSet 11.6-2 SmallSemigroupGeneratingSet 11.6-2 Source, for a graph inverse semigroup element 7.10-2 SpecialLinearMonoid 7.5-2 SpectralRadius 5.6-3 SSSE 8.3-2 StandardiseWord 15.1-3 StandardizeWord 15.1-3 Star, for a bipartition 3.2-6 StarOp, for a bipartition 3.2-6 StringToWord, for a string 15.1-4 StrongSemilatticeOfSemigroups 8.3-1 StructureDescription, for an H-class 10.4-6 StructureDescriptionMaximalSubgroups 10.4-4 StructureDescriptionSchutzenbergerGroups 10.4-3 StzAddGenerator 15.5-3 StzAddRelation 15.5-1 StzIsomorphism 15.6-3 StzPresentation 15.3-1 StzPrintGenerators 15.4-3 StzPrintPresentation 15.4-4 StzPrintRelation 15.4-2 StzPrintRelations 15.4-1 StzRemoveGenerator 15.5-4 StzRemoveRelation 15.5-2 StzSimplifyOnce 15.7-1 StzSimplifyPresentation 15.7-2 StzSubstituteRelation 15.5-5 SubsemigroupByProperty, for a semigroup and function 6.4-2 Successors 5.3-5 SupersemigroupOfIdeal 9.2-3 TemperleyLiebMonoid 7.3-3 TexString 16.2-1 ThresholdNTPMatrix 5.1-12 ThresholdTropicalMatrix 5.1-11 TietzeBackwardMap 15.6-2 TietzeForwardMap 15.6-1 TikzLeftCayleyDigraph 16.3-2 TikzRightCayleyDigraph 16.3-2 TikzString 16.3-1 TraceOfSemigroupCongruence 13.7-5 TranslationalHull, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-11 TranslationalHullOfFamily, for IsFamily 18.1-8 TriangularBooleanMatMonoid 7.6-6 TrivialSemigroup 7.8-1 TypeBitranslations, for IsBitranslationsSemigroup 18.1-9 TypeLeftTranslationsSemigroupElements, for IsLeftTranslationsSemigroup 18.1-9 TypeRightTranslationsSemigroupElements, for IsRightTranslationsSemigroup 18.1-9 UnderlyingRepresentatives, for IsTranslationsSemigroup 18.1-15 UnderlyingSemigroup, for IsBitranslationsSemigroup 18.1-7 UnderlyingSemigroupOfCongruencePoset 13.4-8 UnderlyingSemigroupOfSemigroupWithAdjoinedZero 11.7-4 UniformBlockBijectionMonoid 7.3-8 UnitriangularBooleanMatMonoid 7.6-6 UniversalPBR 4.2-5 UniversalSemigroupCongruence 13.10-3 UnreducedFpSemigroup, for a presentation 15.3-5 UnweightedPrecedenceDigraph 5.6-4 VagnerPrestonRepresentation 11.14-9 VerticesOfGraphInverseSemigroup 7.10-8 WordToString, for a string and a list 15.1-1 WreathProduct 8.1-2 WriteGenerators 17.1-2 WriteMultiplicationTable 17.2-2 ZeroSemigroup 7.8-4
generated by GAPDoc2HTML