\^ 6.2-2 ActionForCrossedProduct 5.1-1 AntiSymMatUpMat 7.3-1 AverageSum 6.2-3 Centralizer 6.2-1 CharacterDescent 7.3-2 CodeByLeftIdeal 8.1-2 CodeWordByGroupRingElement 8.1-1 ConvertCyclicAlgToCyclicCyclotomicAlg 7.7-2 ConvertCyclicCyclotomicAlgToCyclicAlg 7.7-3 ConvertQuadraticAlgToQuaternionAlg 7.7-2 ConvertQuaternionAlgToQuadraticAlg 7.7-3 CrossedProduct 5.1-1 CyclotomicAlgebraAsSCAlgebra 7.1-4 CyclotomicAlgebraWithDivAlgPart 7.1-2 CyclotomicClasses 6.3-1 CyclotomicExtensionGenerator 7.3-1 DecomposeCyclotomicAlgebra 7.7-1 DefectGroupOfConjugacyClassAtP 7.5-5 DefectGroupsOfPBlock 7.5-5 DefectOfCharacterAtP 7.5-5 DefiningCharacterOfCyclotomicAlgebra 7.5-3 DefiningGroupAndCharacterOfCyclotAlg 7.5-3 DefiningGroupOfCyclotomicAlgebra 7.5-3 ElementOfCrossedProduct 5.2-1 Embedding 5.2-1 ExtremelyStrongShodaPairs 3.1-1 FinFieldExt 7.5-6 GaloisRepsOfCharacters 7.3-3 GlobalCharacterDescent 7.3-2 GlobalSchurIndexFromLocalIndices 7.6-1 GlobalSplittingOfCyclotomicAlgebra 7.3-1 InfoWedderga 6.4-1 IsCompleteSetOfOrthogonalIdempotents 4.2-1 IsCrossedProduct 5.1-1 IsCrossedProductObjDefaultRep 5.2-1 IsCyclotomicClass 6.3-2 IsDyadicSchurGroup 7.5-7 IsElementOfCrossedProduct 5.2-1 IsExtremelyStrongShodaPair 3.3-1 IsNormallyMonomial 3.3-5 IsRationalQuaternionAlgebraADivisionRing 7.6-2 IsSemisimpleANFGroupAlgebra 6.1-3 IsSemisimpleFiniteGroupAlgebra 6.1-4 IsSemisimpleRationalGroupAlgebra 6.1-2 IsSemisimpleZeroCharacteristicGroupAlgebra 6.1-1 IsShodaPair 3.3-3 IsStronglyMonomial 3.3-4 IsStrongShodaPair 3.3-2 IsTwistingTrivial 6.1-5 KillingCocycle 7.3-1 LeftActingDomain 5.1-1 LocalIndexAtInfty 7.4-2 LocalIndexAtInftyByCharacter 7.5-4 LocalIndexAtOddP 7.4-2 LocalIndexAtOddPByCharacter 7.5-7 LocalIndexAtPByBrauerCharacter 7.5-6 LocalIndexAtTwo 7.4-2 LocalIndexAtTwoByCharacter 7.5-7 LocalIndicesOfCyclicCyclotomicAlgebra 7.4-1 LocalIndicesOfCyclotomicAlgebra 7.5-1 LocalIndicesOfRationalQuaternionAlgebra 7.6-1 LocalIndicesOfRationalSymbolAlgebra 7.6-1 LocalIndicesOfTensorProductOfQuadraticAlgs 7.6-1 OnPoints 6.2-2 PDashPartOfN 7.2-1 PPartOfN 7.2-1 PrimitiveCentralIdempotentsByCharacterTable 4.1-1 PrimitiveCentralIdempotentsByESSP 4.3-1 PrimitiveCentralIdempotentsBySP 4.3-3 PrimitiveCentralIdempotentsByStrongSP 4.3-2 PrimitiveIdempotentsNilpotent 4.4-1 PrimitiveIdempotentsTrivialTwisting 4.4-2 PSplitSubextension 7.2-2 RamificationIndexAtP 7.2-3 ReducingCyclotomicAlgebra 7.3-1 ResidueDegreeAtP 7.2-3 RootOfDimensionOfCyclotomicAlgebra 7.5-2 SchurIndex 7.1-3 SchurIndexByCharacter 7.1-3 SimpleAlgebraByCharacter 2.2-1 SimpleAlgebraByCharacterInfo 2.2-2 SimpleAlgebraByStrongSP, for rational group algebra 2.2-3 SimpleAlgebraByStrongSPInfo, for rational group algebra 2.2-4 SimpleAlgebraByStrongSPInfoNC, for rational group algebra 2.2-4 SimpleAlgebraByStrongSPNC, for rational group algebra 2.2-3 SimpleComponentByCharacterAsSCAlgebra 7.1-4 SimpleComponentByCharacterDescent 7.3-2 SimpleComponentOfGroupRingByCharacter 7.5-3 SplittingDegreeAtP 7.2-3 StrongShodaPairs 3.2-1 TwistingForCrossedProduct 5.1-1 UnderlyingMagma 5.1-1 WedderburnDecomposition 2.1-1 WedderburnDecompositionAsSCAlgebras 7.1-4 WedderburnDecompositionByCharacterDescent 7.3-4 WedderburnDecompositionInfo 2.1-2 WedderburnDecompositionWithDivAlgParts 7.1-1 ZeroCoefficient 5.2-1
generated by GAPDoc2HTML