Parallel DPLL Implementation in Chapel

Tayfun Elmas

University of Washington
Computer Science & Engineering
telmas@cs.washington.edu

Abstract. This paper talks about the author’s experience with the Chapel
parallel programming language in implementing a parallel implementation
of the DPLL algorithm for solving the satisfiability (SAT) problem. After
we briefly introduce the SAT problem and the DPLL algorithm, along with
its parallelization, we indicate the pros and cons of the Chapel languages
that we encountered during the implementation, compare it with MPI and
give recommendations for the language specification.

1 Introduction

The boolean satisfiability (SAT) problem is one of the most common problems
in many disciplines including computer science and industrial engineering. The
reason behind this is that lots of problem instances in various research areas can be
encoded as SAT instances. This paper talks about experiments the author had while
implementing a parallel version of the DPLL algorithm, a well known algorithm for
propositional SAT solving, in the Chapel programming language. We first introduce
the SAT problem and the DPLL algorithm, along with its parallelization, and then
indicate the pros and cons of the Chapel language that were encountered during
the implementation.

The goal of a SAT solver is to find a satisfying assignment to a boolean formula,
i.e. to make formula evaluate to boolean TRUE. Section 2 formally states the SAT
problem. Although there are generic algorithms that work on formulas in arbitrary
forms, most SAT solvers work on the conjunctive normal form (CNF) of the for-
mula. In the CNF format, the formula is expressed as a set of clauses connected
by the AND operator. Each clause consists of a set of literals, connected by the OR
operator. A literal is a boolean formula with only a positive or negated form of a
variable. The CNF form makes the SAT problem a special case of constraint sat-
isfaction problems (CSP) and the generic algorithms developed for CSP problems
can be applied to SAT instances.

The complete solution to a CNF formula is a complete assignment, which assigns
a boolean value to all the variables and satisfies all the clauses in the formula. The
goal of SAT solving is to declare a formula satisfiable and give a complete solution,
or to declare it as unsatisfiable.

Although, the SAT problem is one of the well-known NP-complete problems [2],
there are very efficient solvers in the literature, some of them are widely-used in
industrial applications. The essential algorithm is the DPLL algorithm, developed
by Martin Davis, Hilary Putnam, George Logemann and Donald W. Loveland in

1962 [3], which is a refinement to the Davis-Putnam algorithm [4]. The DPLL algo-
rithm contains some heuristics and optimizations to increase the runtime efficiency
of the algorithm. Section 3 explains these features of DPLL. There are also further
optimizations to the core algorithm [5].

This paper is organized as follows. We first give a formal introduction to the SAT
problem in Section 2. Section 3 explains the DPLL algorithm and its parallelization
as implemented by the author. We talk about our implementation in Chapel in
Section 4, as well as comments about the specification that we found necessary to
mention.

2 The Satisfiability Problem

This section formally explains the SAT problem. The following section defines the
problem in general case, while Section 2.2 redefines the problem for the CNF form
of formulas. Finally, Section 3 gives information about the DPLL algorithm for
solving the problem exactly.

2.1 Boolean Formula Satisfiability

In general case, a SAT problem is defined with a set of boolean variables X and
an arbitrary formula F' in first-order propositional logic on X. The domain of
variables in X is {0,1} or {FALSE, TRUFE}'. The formula F is constructed with
the boolean connectives including A (AND), vV (OR), = (IMPLIES), and the
negation operator —.

An assignment gives boolean values to variables in X. An assignment in which
all the variables in X are assigned is called a complete assignment. Given a complete
assignment A, the truth of the formula is determined by the semantics of first-order
propositional logic with respect to the valuations of the variables in A. The aim of
solving the SAT problem is thus finding a complete assignment A that will evaluate
the formula F to 1.

2.2 Conjunctive Normal Form (CNF)

The SAT solvers in the literature handle the formulas in a special form called
the conjunctive normal form (CNF), rather than handling them in their arbitrary
structure. The CNF form of a formula F' consists of conjunction of a set of clauses
C=ciNcaN... A\ Qe Each clause ¢; is disjunction of one or more literals: ¢; =
(I1VIaV...Vig,). Aliteral [is an atomic formula that consists of either a variable
x € X or its negation —z.

If the number of literals in each clause is limited to at most k literals, it is
called the kK — CNF SAT problem. While 2 — CNF SAT is polynomially solvable,
k — CNF SAT for k # 3 is NP-complete. Throughout this paper, we refer by the
SAT problem to k — CNF where |¢;| > 3 for all ¢; € C.

! In this paper, we will use the notation {0, 1} for the domain of the variables (1 refers
to TRUE and 0 refers to FALSE).

In the CNF form, the SAT problem is in fact a special kind of the Constraint
Satisfaction Problem(CSP): a SAT instance is a CSP instance where the literals are
constraint variables, the common domain is {0,1} and the clauses are constraints
along with the additional constraints Vi. (p; # p;). Thus any kind of algorithms
and heuristics developed for for CSP problems can be applied to the SAT solving
problem in a straightforward manner [6]. However, how to exploit the heuristics
for CSP problems for solving the SAT problem instances is an open question and
problem-specific SAT solving algorithms, including DPLL, are more preferable in
this sense.

Since most of the metaheuristics may not detect unsatisfiability, or it can be
high-costly to decide unsatisfiability, some users tend to satisfy as many as possible
clauses rather than satisfying the entire formula. This kind of problem is known as
the MAX-SAT problem [7], where each clause ¢; is associated with some weight w;
and the problem is to maximize the sum Evcjec eval(c;, S)w; (eval(c;, S) returns

1if S satisfies ¢;, 0 otherwise).

3 The DPLL Algorithm

3.1 The Sequential Algorithm

procedure DPLL(F, A)
if F evaluates to 1 then
return SATISFIABLE;
if F has an empty clause then
return UNSATISFIABLE;
if there is a unit clause (1) in F then
return DPLL(assign(1,F), A and 1);
if there is a pure literal 1 in F
then return DPLL(assign(1l,F), A’);
1 = choose an unassigned literal from F;
return DPLL(assign(1,F), A’) OR DPLL(assign(NOT(1),F), A’);

Fig. 1. The DPLL algorithm

The DPLL algorithm has been used widely as the core algorithm for many SAT
solvers. In addition to the fundamental optimizations, many other improvements
have been used to increase the efficiency of the algorithm. For example, the Chaff
algorithm [5] contains many of the extensions to the core algorithm. MiniSAT and
zChaff tools are one of the most widely-used SAT solvers.

Figure 1 shows an outline of the DPLL procedure. The algorithm is based on
dividing the SAT solving problem into smaller problems by splitting the formula
depending on the truth values of the clauses. Splitting assigns values to variable that
generate partial assignments and propagates these partial assignments along with
the formula to the same procedure in a recursive manner. It also does backtracking
so that the possible assignments are enumerated until the formula is determined to

be satisfiable or unsatisfiable: Satisfiability is determined when all the clauses are
satisfied by a complete assignment. Unsatisfiability can only be determined after
the exhaustive search ends.

The algorithm uses a simplification mechanism. The procedure assign(1,F)
assigns a value to the variable that appear in the literal 1 a value that makes 1
evaluate to 1. Then it simplifies the formula F according to the current partial as-
signment. As a result, the recursive procedure enumerates the possible assignments
by assigning a value to a variable at a time and checking the resulting simplified
formula in a recursive call to the same procedure.

DPLL uses two optimizations called unit propagation and pure literal elimi-
nation. In the former, if a clause ¢; contains only one literal, the corresponding
variable of the literal is assigned so that ¢; is satisfied. In the latter case, if a vari-
able v; appears in the formula only in its positive or negated form, v; is assigned
that so that its corresponding literals evaluate to 1.

In addition to the unit propagation and the pure literal elimination, most of
the SAT solvers implement a conflict detection and backtracking scheme [1]. In
this scheme, during the search for a satisfying assignment, when a conflict is de-
tected, i.e. when a clause becomes unsatisfiable, the solver generates a clause called
conflict-induced clause that justifies the cause of the conflict. In this case, the
solver backtracks to a higher branch in the search tree without the conflict and
adds the conflict-induced clause to the existing set of clauses in order avoid having
assignments that would cause the same conflict.

In spite of the optimizations such as unit propagation and pure literal elimi-
nation, in the worst case the algorithm enumerates all possible assignments before
reaching a conclusion. This is a fundamental motivation for developing a paral-
lelization for the algorithm. The following section explains how the parallel version
of the algorithm searches the solution space.

3.2 The Parallel Solver

In the sequential version of the algorithm, a single processor traverses the entire
search tree for a satisfying assignment. We first developed the sequential algorithm
before proceeding with the parallelization.

In the parallel version of the algorithm, we distribute the task of searching
different branches of the search tree to processors in the system. In this way, when
a processor reaches a point where it branches on that point of the tree by performing
a decision on the value of a variable, say v, it tries to have a new processor search
the other branch. If the maximum number of allocated processors has not been
reached, it allocates a new processor with the task of searching the other branch of
the tree with the opposite value of v. The new processor inherits the assignments
done by the parent up to that point but keeps its further assignments separately
in another object.

When a processor detects a conflict, it computes the conflict-induced clause as
regular and adds it to the global set of clauses. This allows other processors to be
aware of the conflict and thus to avoid doing the same assignments. If that processor
determines that it needs to backtrack to a depth that is higher than the one it was
allocated, it terminates its search at that point. The purpose of this decision is

that the processor is only assigned the branch that starts from the starting depth
and it has no information about how to proceed from the upper depths. Note that
because the main processor starts from depth 0, there is at least one processor that
keeps doing the search.

4 The Implementation in Chapel

In this section, we comment about the advantages of Chapel in implementing the
parallel DPLL algorithm and list recommendation about the language specification.
Used features Our implementation used the following features of the Chapel
language:

— Arrays, domains, sub-domains: We had domains for clauses and variables. We
stored the clauses and variable assignments in arrays created using these do-
mains. Each clause had a sub-domain of the the variables domain.

— Object-oriented programming: We created Clause, Assignment, IGNode and
Statistics classes to represent a clause, a set of assignment to variables, an
individual assignment to a variable, and runtime measurements, respectively.

— Tuples: We used tuples to return more than one value from global functions.

— Task-parallelism: We created parallel tasks to search different branches of the
assignment space using the begin construct.

— File I/0: We read the propositional formulas from files stored in the standard
CNF file format.

— Time module: We used the Timer class in the Time module to measure the
elapsed time.

— Constants: We used compile-time constants DEBUG and STAT to control de-
bugging and collecting statistics, as well as runtime constants FILE and MAX-
PROCS to allow the user to determine the file name to read the formula from
and the maximum number of procedures to allocate.

— Synchronization variables: We use synchronization variables to allow atomic
allocation of search branches to processors (see alloc_proc) and addition of
new learned clauses to the global set of clauses (see atomic_add_clause).

Global-view programming: Chapel’s view of parallelization helped a lot while
devising the parallel search scheme of our implementation. In fact, we started par-
allelization from a sequential program. However, transferring a sequential code to a
parallel version in MPI is not easy. The reason behind is the transparent access to
global variables in Chapel, whereas MPI require management of explicit distribu-
tion and storage of data across processes. When you convert a sequential procedure
to one that is run by different parallel processing units, you do not need to change
the accesses to the global data except accesses you want to make more efficient by
considering the distribution of the data. In contrast, while you convert a sequential
process to a parallel one, you need to implement the communication mechanism
(either by send/receive primitives or explicitly setting up some shared memory).
In addition, flexility of MPI for different number of locales may require extra
work to adjust the system configuration most of the time, as it affects data dis-
tribution and communication policies. However, Chapel is flexible to any number

of locales; unless the programmer explicitly specifies the data and task distribu-
tion, the compiler automatically make assignments of data and tasks to locales. In
our implementation, we defined our arrays for clauses and assignments as block-
distributed arrays but did not explicitly specify the locales for data distribution
and parallel search tasks.

Data parallelism: We used data parallelism while applying the same computation
to all clauses in the formula in an iteration over the clauses. In this way, we checked
satisfiability of the formula by checking satisfiability of each clause, or searched for
conflicts or unit clauses by distributing the search on each clause in a forall
construct.

We raise one issue at this point. Most of our computations as indicated above
consisted of checking a condition, e.g. satisfiability, on each clause. When the con-
dition is not satisfied we required that no other clauses need to be checked for the
condition, as only one clause that does not satisfy the condition suffice to decide
the overall result. For example, to check satisfiability of a formula, we check each
clause to see whether the current assignment satisfies the clause. If all the clauses
are satisfied, the entire formula is satisfied. However, if at least one clause is not
satisfied, this is sufficient to decide that the formula is not satisfied yet, so other
processors checking other clauses can safely be terminated at this point. However,
the specification states that commands like break or return cannot be called
inside the forall loops. Therefore, we decided to have global boolean flag to in-
dicate whether a final conclusion has been reached, if so each process check this
flag using a conditional (if) and terminates terminates the iteration. The author
suggest a mechanism to support these kinds of computations, in which a processor
could reach a final conclusion and have others terminate.

Task parallelism: Task parallelism in MPI requires more than just statement of
what to be performed, such as communication and synchronization between the
parent and the forked threads. This makes each creation of a parallel task very
hard for the programmer. In contrary, Chapel makes it extensively easy to create a
task, just write the code that will be executed in parallel and the task will use the
global variables as in the sequential case. However, the synchronization issues be-
tween the parent and the children threads should be made more clear as unexpected
situations, such as data races may happen because of this transparent mechanism
of parallelism. As indicated below, for example, the side effects of parallel execu-
tions of iterations and data accesses in them must be strictly specified. In MPI,
because data accesses across processes require explicit communication (except the
new mechanisms for shared memory), the programmer is aware of what is shared
and what is not during the execution.

Synchronization inside loops: The specification states that the iterations in
forall loop can be performed in parallel. In this case one issue is accesses to shared
variables inside iterations. For example, if there is a write to a global variable in
the forall body, two iterations run in parallel will attempt to write to the same
variable simultaneously. Does the programmer have to be aware of this situation,
and perform synchronization to prevent the data race? The same issue happens
when the processes that run iterations of the forall loop access local variables of
the procedure in which the loop is defined.

Synchronization mechanisms: Synchronization variables allow programmers to
devise coarser-level synchronization idioms like mutexes, semaphores, readers/writers
locks. We use synchronization variables to obtain mutual exclusive code blocks that
update shared data (global array of clauses and current number of processors).
However, the author suggests having a standard library of common synchronization
idioms such as the one for Java (java.util.concurrent package, implemented us-
ing the primitive synchronization variable. This will prevent programmers to make
mistakes while building these mechanisms with the primitive synchronization vari-
ables.

Copy-on-access for global variables: In our implementation we used several
global arrays that are accessed by processes running parallel searches simultane-
ously. Clauses array, for example, does not change while the program is running.
Most of the procedures read from this array

Conflicts with the C language: Variable and constant names conflict with the
ones in the standard C library. For example, the author could not declare a constant
named FILE which conflicts with the definition in stdio.h.

References

1. J. P. Marques-Silva and K. A. Sakallah. Grasp: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 1999.

2. Cook, S. A. The complexity of theorem-proving procedures. In Proceedings of the
Third Annual ACM Symposium on theory of Computing (Shaker Heights, Ohio,
United States, May 03 - 05, 1971). STOC ’71. ACM Press, New York, NY, 151-158.

3. Davis, M., Logemann, G., and Loveland, D. A machine program for theorem-proving.
Commun. ACM 5, 7 (Jul. 1962), 394-397.

4. Davis, M. and Putnam, H. A Computing Procedure for Quantification Theory. J.
ACM 7, 3 (Jul. 1960), 201-215.

5. Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S. Chaff: en-
gineering an efficient SAT solver. In Proceedings of the 38th Conference on Design
Automation (Las Vegas, Nevada, United States). DAC ’01. ACM Press, New York,
NY, 530-535.

6. Kumar, V. Algorithms for constraint-satisfaction problems: a survey. Al Mag. 13, 1
(Apr. 1992), 32-44.

7. Roli, A. Design of a New Metaheuristic for MAXSAT Problems. In Proceedings of the
8th international Conference on Principles and Practice of Constraint Programming
(September 09 - 13, 2002). P. V. Hentenryck, Ed. Lecture Notes In Computer Science,
vol. 2470. Springer-Verlag, London, 767.

