
Chapel Compiler Overview

Steve Deitz

June, 2010

Disclaimer. This document attempts to explain how the Chapel compiler works. It is not always complete and correct.

Contents

1 Introduction 3

2 Intermediate Representation 3

2.1 BaseAST . 3

2.2 Symbol . 4

2.2.1 VarSymbol . 5

2.2.2 ArgSymbol . 5

2.2.3 TypeSymbol . 5

2.2.4 FnSymbol . 6

2.2.5 EnumSymbol . 7

2.2.6 LabelSymbol . 7

2.2.7 ModuleSymbol . 7

2.3 Type . 8

2.3.1 PrimitiveType . 9

2.3.2 EnumType . 9

2.3.3 ClassType . 9

2.4 Expr . 9

2.4.1 DefExpr . 11

2.4.2 SymExpr . 11

2.4.3 UnresolvedSymExpr . 11

2.4.4 CallExpr . 12

2.4.5 NamedExpr . 12

2.4.6 BlockStmt . 12

2.4.7 CondStmt . 13

2.4.8 GotoStmt . 13

2.5 Traversing the AST . 14

2.5.1 The Core Traversal (With a Figure of the AST Graph) . 14

2.5.2 The getFirstExpr and getnextExpr Methods . 15

2.6 AST Functions and Methods . 15

2.6.1 Methods for Insertion, Replacement, and Removal . 15

2.6.2 Constructors and new_Expr . 17

2.6.3 BaseAST Functions and Methods . 17

2.6.4 Symbol Functions and Methods . 18

1

2.6.5 Type Functions and Methods . 19

2.6.6 Expr Functions and Methods . 19

2.6.7 Stmt (Expr) Functions and Methods . 20

2.6.8 Miscellaneous AST Utility Functions . 21

2.6.9 Compilation Utility Routines . 21

2.6.10 Optimizations and Analyses . 22

2.7 Primitives . 23

2.8 Pragmas . 24

3 Passes 24

3.1 parse . 24

3.2 checkParsed . 25

3.3 cleanup . 25

3.4 scopeResolve . 25

3.5 flattenClasses . 26

3.6 normalize . 26

3.7 checkNormalized . 27

3.8 buildDefaultFunctions . 27

3.9 resolve . 28

3.9.1 resolveFns(fn) . 28

3.9.2 resolveBlock(fn) . 29

3.9.3 resolveCall(call) . 29

3.9.4 Wrappers . 29

3.9.5 Generic Instantiation . 30

3.9.6 Runtime Types . 30

3.9.7 Scalar Promotion Types . 30

3.9.8 Conditional Resolution and Try Tokens . 30

3.9.9 Iterator Handling During Resolution . 31

3.9.10 The Dream of Out-of-Order Resolution . 31

3.9.11 The Dream of Combined Scope and Function Resolution . 31

3.10 checkResolved . 31

3.11 flattenFunctions . 32

3.12 cullOverReferences . 32

3.13 callDestructors . 32

3.14 lowerIterators . 32

3.14.1 Single Loop Iterator Optimization . 33

3.14.2 Recursive Iterators . 33

3.14.3 Iterators and Local Blocks . 34

3.14.4 Miscellaneous Notes . 34

3.15 parallel . 34

3.16 prune . 35

3.17 complex2record . 35

3.18 removeUnnecessaryAutoCopyCalls . 35

3.19 inlineFunctions . 35

3.20 scalarReplace . 35

3.21 refPropagation . 36

3.22 copyPropagation . 36

2

3.23 deadCodeElimination . 36

3.24 removeWrapRecords . 36

3.25 removeEmptyRecords . 36

3.26 localizeGlobals . 36

3.27 returnStarTuplesByRefArgs . 36

3.28 insertWideReferences . 37

3.29 optimizeOnClauses . 37

3.30 insertLineNumbers . 37

3.31 repositionDefExpressions . 37

3.32 codegen . 38

3.33 makeBinary . 38

3.34 What Happens Between Passes? . 38

4 Miscellaneous 38

4.1 Compiler Strings . 38

1 Introduction

This document contains rough notes about the state of the compiler in June of 2010, sometimes updated with more recent
developments. It is subdivided into three sections. Section 2 describes the intermediate representation, sometimes referred
to as the AST. Section 3 describes the passes and assumptions that may be made about the AST before and after the various
passes. Section 4 covers miscellaneous topics.

This document assumes the reader has excellent familiarity with the Chapel language and understands general compiler
construction principles.

2 Intermediate Representation

The intermediate representation (IR), alternatively called the AST, is a graph-like structure defined by instances of subclasses
of the Symbol, Type, and Expr classes (which are themselves subclasses of the BaseAST class). This representation is used
throughout the entire compilation process, though assumptions on its structure change. (For example, after normalization,
CallExprs will not be nested with the exception of a CallExpr that represents the MOVE primitive (C assignment).) The
BaseAST, Symbol, Type, and Expr classes are never instantiated.

This graph is rooted at the module rootModule which contains DefExprs of all the modules in the program, as well as literals
and other global entities.

Nodes in the representation can also be accessed via global vectors of each node type. These vectors are named as gASTs
where AST is a particular AST node type. For example, gFnSymbols is a vector of all of the functions in a program, nested
or not. Newly constructed nodes are automatically added to these vectors by their constructors. Between passes, these vectors
are pruned of all AST nodes that are not part of the IR (part of the graph).

Three vectors of modules also capture the modules that make up the AST. The vector allModules is a vector of all the
modules, and is probably identical to gModuleSymbols. The vector userModules contains all of the user modules. For
debug purposes, this is useful for looking at the test code in question. The vector mainModules contains all of the main
modules. See Section 2.2.7 for more information on modules.

2.1 BaseAST

Every node in the AST is a subclass of BaseAST. The BaseAST class contains three fields:

• AstTag astTag is an enumeration value used to identify a node’s dynamic type. It corresponds directly to the specific
class that the node is an instance of. astTag is accessed via macros isAST and toAST, where AST is replaced by a

3

node type. isAST checks if a node is a particular type. toAST casts a node to such a type or produces NULL if it is not
exactly that type. This cast mechanism is used instead of C++’s dynamic_cast mechanism.

• int id is a unique integer assigned during construction. This is useful for debugging as each AST node will be
numbered based on the order of construction. These numbers start at 1. During debugging with gdb via the –gdb flag,
you can use the call aid(ID) to get a pointer to the AST node for the given ID.

• int lineno stores the line number of the Chapel code that this AST node originated from. During parsing, this field
is set based on YACC state. Afterwards, these numbers are set based on the global variable currentLineno. This line
number can be changed using the macro SET_LINENO(ast) which will set the global line number to the line number
associated with a given AST node. Thus, for example, if you are adding a compiler-inserted CallExpr before an existing
CallExpr in the AST, you can set the global line number to that of the existing CallExpr, and the new compiler-inserted
AST nodes will use the same line number.

As a note for improvement, our line numbers are often incorrectly reported. If SET_LINENO were used more consistently,
this would not be the case. One way to improve things would be to generate an internal error if SET_LINENO were not used
correctly. To do this, we would want to unset the line number somehow. We could do this with an UNSET_LINENO macro or
we could make the SET_LINENO macro require us to open a scope. Then when we leave this scope, we could set the current
line number back to what it was before we opened this scope (and unset at the outermost level).

2.2 Symbol

The Symbol group of AST nodes derive from the class Symbol. Variables, constants, parameters, literals, arguments, fields,
types, enumeration symbols, modules, and labels are all represented by symbols in the AST.

The fields in Symbol are:

• const char* name stores the Chapel name of the symbol. This is used during scope resolution and function res-
olution to resolve unresolved symbol uses (UnresolvedSymExprs). Comparing this field does not require a string
comparison as it is canonicalized (see note on strings in Section 4.1).

• const char* cname stores the name that we will generate in C. This name is sometimes set during compilation to
improve the readability of the generated code. During the codegen pass, we legalize these names and mangle them
as necessary. Like name, comparing this field does not require a string comparison as it is canonicalized (see note on
strings in Section 4.1).

• Type* type stores the resolved type of variables, arguments, and fields. This is generally set during function resolution
when types are resolved. Before such resolution, the type dtUnknown is used.

• DefExpr* defPoint points to a DefExpr, the expression hook in the AST. Every symbol has a DefExpr that connects
the symbol to the AST. The symbol can also show up in the AST via the expression SymExpr. These account for both
defs (writes to the symbols) and uses (reads of the symbols).

• std::bitset<NUM_FLAGS> flags is a bit vector of flags (referred to as pragmas when they appear in Chapel code).
Flags are associated only with symbols. See Section 2.8 for more information about flags.

The subclasses of Symbol include the following:

• VarSymbol (Section 2.2.1)

• ArgSymbol (Section 2.2.2)

• TypeSymbol (Section 2.2.3)

• FnSymbol (Section 2.2.4)

• EnumSymbol (Section 2.2.5)

• LabelSymbol (Section 2.2.6)

• ModuleSymbol (Section 2.2.7)

4

2.2.1 VarSymbol

The VarSymbol class represents variables, including both global variables (in a module) and local variables (in a function).
The VarSymbol is also used for fields (in a type).

The constness of a variable is handled via a flag, so constants and parameters (compile-time constants) are represented by
VarSymbol objects as well.

VarSymbols are also used to represent literals (e.g. the integer constant 1) using the field immediate (see below). The
representation of immediates is code that came from IF1, an iterative flow analysis engine. The name of such a VarSymbol is
automatically generated by the compiler.

The fields of VarSymbol include the following:

• Immediate* immediate stores a representation of a literal symbol.

2.2.2 ArgSymbol

The ArgSymbol class is used to represent the formal arguments of functions. The fields of the ArgSymbol include the
following:

• IntentTag intent stores the specified intent of the argument. This can be blank, in, inout, out, or const. Note that
INTENT_REF does not appear to be used and probably predates the introduction of reference types. The intent field also
marks generics via parameter and type intent arguments. The intent field is largely ignored after function resolution,
which is to say that the functionality of the intent has been folded into the representation without it. Thus if the intent
were inout, then a copy in and a copy out (via assignment and/or a move primitive) would have been added to the AST.

• BlockStmt* typeExpr stores the type of the argument as it is parsed in. This specified type is resolved during
function resolution when the type field is set. After the type field is set, this field is ignored.

• BlockStmt* defaultExpr stores the expression specified as a default for the argument (what is used if no actual
is specified). The default expression is folded into the AST during function resolution by creating a default wrapper
function.

• BlockStmt* variableExpr stores the expression specified after an ellipsis specifying a variadic argument. This
must resolve during function resolution to a parameter expression (it can also be omitted for variadic arguments or a
query identifier). After function resolution, this field is ignored.

• Type* instantiatedFrom stores the argument from which this argument has been instantiated. That is, it points to
the original argument in a generic function. It is only used during the function resolution pass.

• bool instantiatedParam marks an argument as a parameter that has been instantiated. This is only used during
function resolution, and should most likely be a flag, or a hash table.

• bool markedGeneric marks an argument as generic (presumably). It is used to mark a type as generic if the Chapel
programmer inserts a ? next to a generic type that has default values for all of its generic fields. This is also used to
mark arguments when building default functions, but I’m not sure why. This should probably be a flag. It does span
multiple passes (being set in normalize and used in resolution).

2.2.3 TypeSymbol

The TypeSymbol class is used for types. The subclasses of Type can be thought of as storing auxiliary information about types.
There is a one-to-one mapping between TypeSymbols and Types. So the type field of TypeSymbol points to a subclass of
Type, and the symbol field of this type class will point back at the TypeSymbol.

A good refactoring would probably be to use TypeSymbol everywhere that Type is used. Then a field in TypeSymbol could
point to its auxiliary information, but we would never have to point back. This refactoring would require changing, for
example, the type field of Symbol from Type to TypeSymbol.

The TypeSymbol class has no fields, inheriting all of the information it needs from the Symbol class, and putting all of the
extra information in the Type class.

5

2.2.4 FnSymbol

The FnSymbol class is used to represent all methods and functions in a program. Top-level code in a ModuleSymbol is
accumulated into a FnSymbol (pointed by the ModuleSymbol’s initFn) during parsing.

The fields of FnSymbol include the following:

• AList formals is an alist (linked list of Expr subclasses) of DefExprs that define ArgSymbols. These are the formal
arguments stored in a specified order.

• DefExpr* setter is non-null for var functions, and represents the setter argument. This argument is of bool type and
is set to true only when the function is used in an lvalue setting. The implementation of var functions involves cloning
the function so that there are two versions, one for lvalues and one for non-lvalues. However, it is important to note
that at function resolution time, we don’t determine which is called. That is, we always resolve both versions. So this
argument can not be used as a parameter.

• Type* retType stores the resolved return type of a function. This field is set during function resolution because only
at that point can we determine the type.

• BlockStmt* where stores the expression that is the where clause for a function. It is evaluated to true or false during
function resolution when choosing a candidate. This has language ramifications to our in-order function resolution
since we could end up in an infinite recursion if we have to evaluate a where clause by evaluating a function that we
have not yet finished evaluating. This results in an error rather than an infinite recursion.

• BlockStmt* retExprType stores the specified return type as an expression. The type cannot be resolved from this
expression until function resolution time, except for simple cases. This expression is looked at during normalization
when normalizing returns (making each function have a single return statement that is the last statement in that func-
tion).

• BlockStmt* body stores the BlockStmt that is the body of the function. This is where the code is!

• IntentTag thisTag stores an intent on the implicit this argument. It is set during parsing before the implicit this
argument has been created. Perhaps we could also create the implicit this argument earlier...

• RetTag retTag stores the return tag, whether this function is a var function, a param function, a type function, or a
regular “value” function.

• IteratorInfo* iteratorInfo stores information about the iterator record and class that are created when an iter-
ator function is lowered into a record and a class with methods during the lowerIterators pass. The prototypes are set
up during function resolution, and then filled in when iterators are lowered.

• Symbol* _this stores a pointer to the implicit this argument for methods. For constructors, _this is a VarSymbol
that is declared in the body of the constructor.

• Symbol* _outer pertains to outer classes. It is set for nested class constructors and replaces _this.

• FnSymbol *instantiatedFrom is set for functions that have been instantiated from generic functions. This points
to the generic function, is only used during function resolution, and can probably be stored in a hash table.

• SymbolMap substitutions is a hash table of the substitutions that were made to instantiated this generic function.
The keys are arguments in the generic function (original function) and the values are the types or parameters over which
these arguments have been instantiated.

• BlockStmt* instantiationPoint points to a point in the code that we are using as the instantiation point for
function resolution (just like the instantiation point in C++). Constrained generics will not need an instantiation point!

• Vec<BasicBlock*>* basicBlocks is built when calling buildBasicBlocks on a function. The basic block is stored
as a vector of Exprs where these are pointing at the expressions in the function. Basic blocks are used by the dataflow
analyses and optimizations. They are not maintained. This probably just does not need to be a field, as it is not updated
and is recomputed for each analysis.

6

• Vec<CallExpr*>* calledBy points to all of the CallExprs that call this function. These vectors are computed
by compute_call_sites (Section 2.6.9), but are not maintained when CallExprs are changed. This field could be
removed if this function were to build a Map from FnSymbols to a vector of CallExprs.

• const char* userString is set during parsing so that we can store the prototype of the function and issue error
messages to the user that display function candidates just as they are written in the Chapel code.

• FnSymbol* valueFunction points to a value version of a var function. This is only referenced in function resolution
and the pass that culls references. It may be better to use a hash table defined and used by the resolution passes.

2.2.5 EnumSymbol

The EnumSymbol class defines an enumeration constant (not an enumeration type). This class has no fields, inheriting all of
the information it needs from the Symbol class.

2.2.6 LabelSymbol

The LabelSymbol class defines a label that can be the target of a break or continue statement, or a goto statement. There
are no goto statements in Chapel, but there are goto statements in our intermediate representation, and they are introduced
especially (perhaps only) when iterators are lowered into classes and methods (including an advance method). In subsequent
calls to the advance method, a jump table is implemented with goto statements.

The DefExpr of the LabelSymbol must be declared in a function and is eventually the target of a goto. During scope resolution,
all break and continue statements are lowered to normal goto statements. The SymExpr of a LabelSymbol becomes a use of
the label. Such uses only occur in GotoStmts.

This class has no fields, inheriting all of the information it needs from the Symbol class.

2.2.7 ModuleSymbol

Chapel programs are composed of modules and these modules are stored as ModuleSymbols. The fields of ModuleSymbol
include the following:

• ModTag modTag categorizes the type of module as a user module, an internal module, a main module (passed to the
compiler explicitly, and thus a candidate for main, I think), or a standard module.

• BlockStmt* block contains the code defined in a module symbol. This is mostly a list of DefExprs of functions,
types, and global variables.

• FnSymbol* initFn contains a pointer to the initialize function for a module. This function is called when a module
is used at program startup. It is built during the parse pass to contain the entire module body (including function
definitions and variable declarations), but after subsequent passes retains just module-level executable code.

• const char* filename stores the filename that this module was declared in. Historically, we used to store filename
alongside lineno, but this seemed like overkill given that all of the AST in a module has the same filename. After
inlining, this may not be the case, but the current way may be sufficient.

• Vec<ModuleSymbol*> modUseList is a vector of modules used to determine the order of module initialization.
(bradcray r15954)

• Vec<ModuleSymbol*> modUseSet is a vector of modules used to determine the order of module initialization. Pre-
sumably, this field is a set and the previous one is a vector. It is unclear whether these have to be fields. (bradcray
r15954)

7

2.3 Type

Type is basically a class that is associated with TypeSymbols in a one-to-one mapping and stores auxiliary information
relevant to the particular kind of type.

The fields in Type are:

• Vec<Type*> dispatchParents stores the vector of types that are parents, e.g., a class’s superclasses.

• Vec<Type*> dispatchChildren stores the vector of types that are children, e.g., a class’s subclasses. The inheri-
tance relationship is set up before resolving symbols via scope resolution since we need to know this relationship within
methods. Note that the compiler, to date, only supports a single parent though we use a vector here for future support
of multiple inheritance.

• Type* scalarPromotionType marks the element type for which this type would scalar promote a function.

• TypeSymbol* symbol points to the TypeSymbol that represents this type and points to this class via the type field.

• Symbol* defaultValue points to a symbol that can be used to initialize a variable of this type. If defaultValue is
NULL (as in the case of a record), then the default constructor is invoked to initialize a variable of this type.

• FnSymbol* defaultConstructor points to the default constructor for this type. The default constructor is fairly
elaborate in Chapel, having an argument for every field. Even if a type is defined with user-defined constructors, we
still create and call the default constructor when resolving the type. However, the default constructor is deprioritized.

• FnSymbol* defaultTypeConstructor points to the default type constructor. (This name is less than ideal since a
type can have only one “type constructor” - which is the default one.) The type constructor is invoked when specifying
a type (e.g. instantiating a generic type) rather than instantiating an instance of the type. The function pointed to by
t.defaultTypeConstructor takes one argument for each generic field of the type t (e.g. its type parameter or a
value field of an unspecified type). When it is invoked (at compile time), the actual arguments are types and the result is
the corresponding instantiation of t (which is a (possibly newly-created within the compiler) Type (or TypeSymbol -
to be checked)). By contrast, the defaultConstructor (or any other constructor) takes value arguments and creates
values (e.g. instances of the class) at run time.

For example, in Chapel, given the class class C { var x; }, the expression C(int) produces an (instantiated)
type. This type, for example, would be the type of the variable y in var y = new C(int).

• FnSymbol* destructor points to a destructor. This field is not set until during function resolution and is then used
during the pass that inserts calls to the destructors.

• Vec<FnSymbol*> methods is a vector of the methods on a type (including primitive types).

• bool hasGenericDefaults marks a type if all of the generic fields on the type have default values, since such a
type has to be handled with care if the generic version is sought (via a ?).

• Type *instantiatedFrom points to the generic type from which this type was instantiated. (Then, how is the
reference type represented?)

• SymbolMap substitutions is a hash table of the substitutions that were made to instantiate this generic type. It is
similar to the field on the function symbol.

• ClassType* refType points to the reference type if this type is a value type. Reference types are introduced during
function resolution because there are no reference types in Chapel, just in the intermediate representation.

The subclasses of Type include the following:

• PrimitiveType (Section 2.3.1)

• EnumType (Section 2.3.2)

• ClassType (Section 2.3.3)

8

2.3.1 PrimitiveType

The PrimitiveType class is used to represent nodes that are primitive types such as integers, reals, strings, C files, a timer type,
some auxiliary types for sync and single variables, etc.

This class has no fields, inheriting all of the information it needs from the Type class.

Chapel’s primitive types, as well as some internally-useful types, are stored in PrimitiveType* global variables, e.g.
dtVoid, dtNumeric, dtBool, etc. See $CHPL HOME/compiler/include/type.h .

2.3.2 EnumType

The EnumeratedType class contains auxiliary information for enumerated types, basically a list of EnumSymbol constants.
The fields in EnumType are:

• AList constants is a list of DefExprs that define the EnumSymbols for this enumerated type.

2.3.3 ClassType

The ClassType class contains auxiliary information for classes, records, and unions. The fields of ClassType are:

• ClassTag classTag is an enumeration to identify whether this ClassType is a class, record, or union. The creative
constant name CLASS_CLASS suggests this class could have a better name.

• AList fields is a list of DefExprs that define the fields in this class, represented as VarSymbols.

• AList inherits is a list of Exprs that represent the types from which this type inherits. In the current implementation
this is limited to a SymExpr. Inheriting from generics is complicated because we do not instantiate generic types until
function resolution, but we need to build up the inheritance hierarchy in time for scope resolution. This poses a
challenge, but we should be able to handle it by computing a generic inheritance graph.

• Symbol* outer points to the outer class if this is an inner class.

Certain standard class types are stored in ClassType* global variables, e.g. dtArray, dtBaseDom, dtTuple, etc. See
$CHPL HOME/compiler/include/type.h .

2.4 Expr

The Expr subclasses represent the structure of the program in the AST. Expression objects (i.e. instances of subclasses of
Expr) enjoy a very important “uniqueness” property: there may be only a single instance of a pointer to an instance of any
Expr subclass. (There are exceptions – the “auxiliary” fields below.) In other words, a given expression object can be put into
the AST only once. By contrast, there may be multiple pointers to a given instance of a Symbol or Type subclass. An Expr
can still be shared by assigning it to a temp Symbol (using the move primitive, Section 2.7) and having multiple SymExprs
reference it. An Expr can also be replicated, e.g. using the BaseAST::copy method (Section 2.6.3).

All references to identifiers (i.e. pointers to Symbol objects) are represented by unique Expr instances, often SymExprs.
Consider, for example, a program that contains the following calls:

f1(a, b);
f2(b, c);

The AST for this portion of the program will be represented (throughout the entire compilation) by two different instances
of CallExpr. Each instance will have the baseExpr field point to a distinct instance of the SymExpr class. The var fields
of those SymExprs will point to the FnSymbol instances that represent f1 and f2. Each instance of CallExpr will have the
argList field point to a list of expressions. Each list will contain two distinct SymExpr instances, for a total of four distinct
SymExpr instances. The second SymExpr instance in the first CallExpr will set its var to point to the Symbol that represents
b, as will the first SymExpr instance in the second CallExpr. These two SymExprs are the unique wrappers around the same
Symbol.

9

The uniqueness property can be made more precise by categorizing each Expr-pointing (or Expr-subclass-pointing) field of
an AST class as either “defining” or “auxiliary”. The uniqueness property requires that each Expr is pointed to by at most one
“defining” field. In other words, all non-NULL pointers stored in all “defining” fields of all AST objects must be distinct. By
contrast, “auxiliary” pointers are guaranteed to be duplicates of “defining” pointers. For example, the pointer from an Expr to
its child is “defining”, so for a given Expr there is only one parent expression that points to it. The back pointer from an Expr
to its parent is “auxiliary”, so multiple children may point back to the same parent expression.

This uniqueness property is useful by allowing us to identify an expression’s position within the AST given just a pointer to
that expression node. For example, just such a pointer is sufficient to remove the node completely from the AST, updating
properly all the surrounding auxiliary pointers. Also, uniqueness facilitates implementing iterators over the AST that visit
each node exactly once, in particular, the AST_CHILDREN_CALL macro. Also, when you modify an expression in-place, you
are assured that it affects the AST only in that one place.

The uniqueness property, like many other assumptions on the AST, holds between compiler passes (Section 3). It may be
violated temporarily within a pass, e.g. while a node is being added to or removed from the AST.

Lists of Exprs are represented in the compiler as doubly-linked lists wrapped in AList objects. For Exprs that are list
members, the uniqueness property is as follows. Each Expr may occur only on a single list and there may be only a single
“defining” pointer to each AList object. Therefore we will extend the uniqueness property and the “defining” vs. “auxiliary”
categories to AList-pointing (or AList-containing) fields. The forward and back pointers that link Exprs into a list could be
thought of as “auxiliary” if we think of the “defining” field for the enclosing AList object as being “defining” for all the Exprs
on that list.

The fields in Expr are:

• Expr* prev is an auxiliary pointer to the previous expression in a list, if this expression is in a list.

• Expr* next is an auxiliary pointer to the next expression in a list, if this expression is in a list. (See the discussion of
lists of Exprs above.)

• AList* list is an auxiliary pointer to the AList object whose list contains this expression. (It is auxiliary because all
objects on the same list will have the same list pointer.)

• Expr* parentExpr is an auxiliary pointer to the parent expression. This is set any time an Expr is pointed to by
another Expr. For example, a parent CallExpr node points to its children via baseExpr and argList. The Expr nodes
pointed to via these pointers will set parentExpr to point to this parent CallExpr node. The parentExpr node can be
NULL even if this node is part of the AST. This happens if this Expr node is pointed at directly from a Symbol or Type
node. For example, via the body field of a FnSymbol node.

• Symbol* parentSymbol is a back pointer to the parent lexically-enclosing symbol. For Exprs within a function body,
this is the function’s FnSymbol. For Exprs located directly in a module, this is the module’s ModuleSymbol.

If this is not set, the node is not considered part of the AST. When using remove to remove an expression from the
AST, all the Expr nodes that make up that expression are traversed and their parentSymbol back pointers are set to
NULL. Testing for the existence of parentSymbol is sufficient to tell if an Expr node is part of the AST. Between
passes, nodes that are not part of the AST are garbage collected.

Note that by and large, prev, next, list do not have to be manipulated because inserting and removing Expr nodes from
the AST should be done via the functions insertAtHead, insertAtTail, insertBefore, insertAfter, replace, and
remove. These functions will also update the back pointers parentExpr and parentSymbol, which should never be set
elsewhere. These functions are described in Section 2.6.1.

The subclasses of Expr include the following:

• DefExpr (Section 2.4.1)

• SymExpr (Section 2.4.2)

• UnresolvedSymExpr (Section 2.4.3)

• CallExpr (Section 2.4.4)

• NamedExpr (Section 2.4.5)

10

• BlockStmt (Section 2.4.6)

• CondStmt (Section 2.4.7)

• GotoStmt (Section 2.4.8)

Note that some of these end with “Stmt” while others end with “Expr.” This distinction is important for the following reasons.
At least after normalization, we will never get to a BlockStmt when traversing the AST from SymExpr, UnresolvedSymExpr,
CallExpr, or NamedExpr – unless we traverse into Symbol nodes or we are coming from a DefExpr node. Also we do not
traverse into Type nodes unless we are coming from a TypeSymbol node. This is indeed how AST traversal works. See
Section 2.5.

2.4.1 DefExpr

Every symbol, with the exception of rootModule, is pointed to by a distinct instance of the DefExpr class. The defining
pointer to this DefExpr locates the declaration of this symbol in the AST.

The fields in DefExpr are:

• Symbol* sym is a pointer to the symbol that this DefExpr declares. Note that using the typical terminology of com-
pilers, this is not a def for a VarSymbol after normalization. A def would be marked by a SymExpr (an occurrence of
the symbol) that is on the left-hand side of an assignment or primitive move, for example.

• Expr* init is used to capture an expression that is used to initialize this symbol. For variables and fields, this is
the initialization expression in the Chapel code. This is not used for ArgSymbols (where the corresponding expression
is pointed to directly by the ArgSymbol field defaultExpr). After normalization, this field should be NULL and the
AST should be modified so that the functionality is elsewhere. For variables, this means that there will be expressions
inserted after this DefExpr to do the initialization. For fields, this means that there will be expressions added to a default
constructor to do the initialization. The code to complete this transformation is in the normalize pass. This is a defining
field.

• Expr* exprType is used to capture an expression that is used to specify the type. Before function resolution, the type
is stored as an expression. It could be a simple SymExpr if the type is a simple record R or a primitive type like int,
but this need not be the case if the type is specified as a call to a type function or an instantiated type such as C(int).
The exprType field undergoes similar transformations to the init field at the same time (normalization). This is a
defining field.

2.4.2 SymExpr

Whenever a symbol is used or defined (not declared) in the AST, it is wrapped by an instance of the SymExpr class. This
makes for a bulky intermediate representation. An optimized intermediate representation might replace the list of expressions
in a normalized CallExpr by a vector of Symbols.

The fields in SymExpr are:

• Symbol* var is a pointer to the occurrence of the symbol that this SymExpr wraps. Later in compilation, it is often
useful to categorize these SymExprs as either uses or defs. I think there is a slight problem with respect to this
categorization as currently involves references.

2.4.3 UnresolvedSymExpr

The UnresolvedSymExpr nodes represent names of symbols that have not yet been resolved by either scope resolution (vari-
ables, fields, arguments, etc.) or function resolution (functions). This is one of the most recently introduced nodes as it
replaces UnresolvedSymbol, a subclass of Symbol.

Nodes of this type should not exist after function resolution. They are eliminated during scope resolution and function
resolution.

The fields in UnresolvedSymExpr are:

11

• const char* unresolved is the name of a symbol for which the symbol has not been resolved. Comparing this
field does not require a string comparison as it is canonicalized (see note on strings in Section 4.1).

2.4.4 CallExpr

The CallExpr node represents function calls as well as primitive calls. Primitives are further explained in Section 2.7.

The fields in CallExpr are:

• Expr* baseExpr is a pointer to the base expression (the expression that evaluates eventually to a FnSymbol). After
function resolution, this field, if set, will always point to a SymExpr that points to a FnSymbol. Before function
resolution, there are additional possibilities. For example, given the Chapel code f()(), where the call f() returns an
instance of a class with a this method, then baseExpr will point to the CallExpr of f(). After function resolution,
baseExpr will point to the this method, which may be virtual. This is a defining field.

A call to a first-class function will be rewritten as a (possibly virtual) call to the this method of a compiler-generated
class (either the “parent” or the “child” class in the jargon of the first-class function implementation). If the CallExpr is
a virtual call, it is replaced with a primitive, and the primitive field (see below) is used. So in any case if baseExpr
is not NULL, the above invariant of pointing to a SymExpr for a FnSymbol is be preserved.

• AList argList is a pointer to the expression list that makes up the actual arguments to this CallExpr. This is a
defining field, although not a pointer.

• PrimitiveOp* primitive is a pointer to the primitive. If this field is set, then baseExpr will be NULL. It’s a
one-or-the-other situation.

• bool partialTag handles the case involved with resolving the Chapel code given by x.y() by marking this case.
We have to distinguish between two situations. The first is where we are invoking a method y. The second is where we
are invoking a parentheses-less method (possibly a getter for a field) that returns a class instance with a this method,
and then we are invoking the this method. So in the latter case, we invoke two functions, while in the former case,
we invoke just one. This code is represented as a nested CallExpr, and the inner CallExpr is marked with this tag after
normalization.

• bool methodTag marks basic (i.e. not partial) method invocations, even if they are parentheses-less. For example,
with x.y, the method call of y after normalization will have this flag true, but partialTag will not be marked true,
and there will be no nested call expressions. It seems that if partialTag is set, then methodTag is set.

• bool square marks function calls that are invoked using square brackets. This is the only distinguishing mark for
this case.

2.4.5 NamedExpr

The NamedExpr class is used to represent passing an actual to a function via a named argument.

The fields in NamedExpr are:

• const char* name is the name of the formal argument. Comparing this field does not require a string comparison as
it is canonicalized (see note on strings in Section 4.1).

• Expr* actual is the actual expression passed to the call. This is a defining field.

2.4.6 BlockStmt

The BlockStmt class represents a block of code in Chapel, including all loops.

The fields in BlockStmt are:

• BlockTag blockTag marks the BlockStmt with a tag. This field used to be used to distinguish the different types
of BlockStmts more than it is used now. Most of this functionality has been moved into the blockInfo field via a

12

CallExpr with a primitive. The remaining tags can be moved there as well, eliminating this field. These tags mark this
block in two ways. First, scopeless blocks are marked to indicate that this block should not be considered relevant when
completing scope resolution. Second, type blocks are marked to indicate that the code in this block statement should
only be used to determine the types of variables (during function resolution). Such blocks are removed after function
resolution and the code represented by this block is not executed.

• AList body is a list of expressions that form the body of this block, the statements within it. This is a defining field,
although not a pointer.

• CallExpr* blockInfo is a call to a primitive that marks this block as special in some way, e.g., a while loop. This
is a defining field.

• CallExpr* modUses is a call of ModuleSymbols where each of these ModuleSymbols represents a use of a particular
module. This list is largely constructed during scope resolution. This is a defining field.

• LabelSymbol* breakLabel is a pointer to a compiler-inserted LabelSymbol that should be the target of a break’s
GotoStmt.

• LabelSymbol* continueLabel is a pointer to a compiler-inserted LabelSymbol that should be the target of a con-
tinue’s GotoStmt.

• const char* userLabel is a label introduced by the Chapel programmer before a loop that can be the target of
either a break or a continue’s GotoStmt.

2.4.7 CondStmt

The CondStmt class represents conditional statements. (Conditional expressions are represented by nested functions that
contain conditional statements.)

The fields in CondStmt are:

• Expr* condExpr points to the expression that is evaluated (at compilation time or runtime) to true or false. After
normalization, this is a SymExpr. If this expression evaluates to a parameter value during function resolution, the
conditional statement is folded and removed during function resolution. This is a defining field.

• BlockStmt* thenStmt points to a block of code that forms the true part of this statement. This is a defining field.

• BlockStmt* elseStmt points to a block of code that forms the false part of this statement. This block can be NULL
if there is no else part. This is a defining field.

2.4.8 GotoStmt

The GotoStmt implements the well-understood, but “harmful” goto statement. Although there are no goto statements in
Chapel, there are in our intermediate form. All break and continue statements are transformed into goto statements during
scope resolution. Additional goto statements are introduced when lowering iterators, as described in Section 3.14.

The fields in GotoStmt are:

• GotoTag gotoTag marks the type of the goto statement. This distinguishes breaks and continues from normal gotos.
After scope resolution, there are no more breaks or continues.

Note that for certain simple cases, we could use break and continue statements throughout compilation, but for more
complicated cases, this is impossible since some of the code that must be done for each iteration has to be moved
inside the loop and some code that should be done only after the loop completes naturally has to be placed after the
loop. Eliminating breaks and continues also, of course, simplifies the number of cases we have to handle later on
during compilation. This digression illustrates a philosophical change/difference between the early implementation of
the compiler and the later implementation of the compiler. The semantics of the language can be better mapped to the
implementation if we use a simple intermediate representation.

• Expr* label is often initially an UnresolvedSymExpr to a name that should eventually resolve to a LabelSymbol.
After scope resolution, this field should always point to a SymExpr that wraps a LabelSymbol. This is a defining field.

13

2.5 Traversing the AST

The AST is a graph that the compiler traverses in a number of ways.

2.5.1 The Core Traversal (With a Figure of the AST Graph)

The core traversal mechanism is implemented by the macro AST_CHILDREN_CALL. This macro takes as arguments a pointer
to a BaseAST node, the name of a recursive C function, and a list of additional arguments to be passed to the C function. The
BaseAST node’s child being visited is passed by the macro to the function as the first argument.

A good example of using this macro is in the function collectDefExprs which collects all the DefExprs that should be
traversed from any AST node, for example, a FnSymbol. In this example, we would capture all of the local variable definitions
in the function.

The definition of AST_CHILDREN_CALL must be updated whenever the AST is modified, either by adding fields or new
classes. The implementation of this macro captures the structure of the graph. Notice that when traversing a CallExpr, we
traverse its baseExpr (baseExpr) and its list of actuals (argList).

The graph structure (omitting leaf nodes like UnresolvedSymExpr) is illustrated in Figure 1. Every subclass of Symbol, Type,
and Expr is represented if that subclass may not be a leaf in the traversal of the graph. For example, both SymExpr and
UnresolvedSymExpr are leaves when traversing. The var field of SymExpr is not traversed. (Since we only want to traverse
every Symbol once, we do it via the DefExpr. More than one SymExpr node can point to the same Symbol, and that is to be
expected.)

C a l l E x p r

N a me d E x p r

D e f E x p r

B l o c k S t m t

C o n d S t mt

Mo d u l e S y m b o l

A r g S y m b o l

T y p e S y mb o l

F n S y mb o l

E n um T y p e

C l a s s T y p e

b a s e E x p r
a r g L i s t

a c t u a l

i n i t
e x p r T y p e

s y m

b o d y
b l o c k I n f o

m o d U s e s

c o n d E x p r
t h e n S t mt
e l s e S t m t

b l o c k

t y p e E x p r
d e f a u l t E x p r

v a r i a b l e E x p r

t y p e

f o r m a l s
s e t t e r

b o d y
w h e r e

r e t E x p r T y p e

c o n s t a n t s

f i e l d s
i n h e r i t s

E x p r

T y p e

v i a A L i s t
v i a p o i n t e r

S y m b o l

G o t o S t mt
l a b e l

Figure 1. The AST graph structure, as it is traversed, omitting leaf nodes.

Although there are cycles in Figure 1 in terms of classes, there are no cycles in terms of instances of classes. That is, even
though we can traverse from DefExpr to FnSymbol and back to DefExpr, the next DefExpr will definitely be a different
instance, and that in turn will go to a different instance of Symbol. Another important point to note is that we only traverse
back to either Symbol or Type from Expr nodes via the sym field of the DefExpr node.

In these data structures, the only other field that points to an Expr node is the parentExpr field. This is an auxiliary pointer

14

and so is not traversed when visiting the nodes via the traversal mechanism.

There are a number of fields that store pointers to symbols. Some of these are auxiliary pointers, like parentSymbol in Expr,
but some are not, like var in SymExpr. Pointers to the same Symbol and Type instances can appear more than once in this
IR, but only once via a DefExpr, which roots it in the Chapel program.

A number of collection routines are implemented that use the traversal mechanism to collect a vector of nodes. These routines
are sometimes more convenient or more efficient to use, depending on the particular analysis or transform being implemented.
The following list captures the current implementation:

void collect_asts(BaseAST* ast, Vec<BaseAST*>& asts);
void collect_asts_postorder(BaseAST*, Vec<BaseAST*>& asts);
void collect_top_asts(BaseAST* ast, Vec<BaseAST*>& asts);
void collect_stmts(BaseAST* ast, Vec<Expr*>& stmts);
void collectDefExprs(BaseAST* ast, Vec<DefExpr*>& defExprs);
void collectCallExprs(BaseAST* ast, Vec<CallExpr*>& callExprs);
void collectGotoStmts(BaseAST* ast, Vec<GotoStmt*>& gotoStmts);
void collectSymExprs(BaseAST* ast, Vec<SymExpr*>& symExprs);
void collectSymbols(BaseAST* ast, Vec<Symbol*>& symbols);
void collectFnCalls(BaseAST* ast, Vec<CallExpr*>& calls);

Except for collectFnCalls and collect_top_asts, these routines traverse the AST in total from a given AST node
ast, and collect the nodes of a given type into a vector, the second argument. The function collectFnCalls collects all
CallExprs that are not to primitives. The function collect_top_asts collects all nodes that are “top-level” where that is
defined as not traversing into a Symbol via a DefExpr. Thus before the pass that flattens nested functions, this function is
useful if we don’t want to collect the nodes in a nested function when traversing the outer function.

The collect routines are sometimes useful and efficient, but for time-critical sections of code, it is sometimes better to define
a recursive function that calls the traversal macro AST_CHILDREN_CALL directly.

2.5.2 The getFirstExpr and getnextExpr Methods

The stylized loop for_exprs_postorder uses the functions
Expr* getFirstExpr(Expr* expr);
Expr* getNextExpr(Expr* expr);

to iterate over an expression. This iteration technique is only used in function resolution to date.

The function getFirstExpr returns the first expression that would be returned in a postorder traversal of the Expr node that
is passed to this function. Then given any Expr node in this traversal, the function getNextExpr returns the next expression in
the postorder traversal. This functionality can only be used on those Expr nodes that have a null parentExpr field. (Otherwise,
getNextExpr would end up traversing up into the parent.) (Where do these “top-level” nodes occur?)

This style of iteration is used in function resolution when walking through a BlockStmt and resolving types and function calls.

2.6 AST Functions and Methods

This section details implemented functions and methods pertaining to the AST.

2.6.1 Methods for Insertion, Replacement, and Removal

For changing the IR, these methods should always be used as they update auxiliary pointers and enforce some constraints.
void FnSymbol::insertAtHead(Expr* ast);
void FnSymbol::insertAtTail(Expr* ast);
void CallExpr::insertAtHead(BaseAST* ast);
void CallExpr::insertAtTail(BaseAST* ast);
void BlockStmt::insertAtHead(Expr* ast);
void BlockStmt::insertAtTail(Expr* ast);

The insertAtHead and insertAtTail function insert new Expr nodes at the beginning or end of a list of
Exprs. When using these methods on FnSymbol, the list is the body field in the BlockStmt::body field of the
FnSymbol. When using these methods on BlockStmt, the list is the body field of the BlockStmt.

15

When using these methods on CallExpr, the list is the argList field, the list of actual expressions passed to
the CallExpr. Notice that these methods take any BaseAST, rather than Expr. This allows Symbol nodes to be
passed to these methods directly. The methods insert a SymExpr around such Symbol nodes. This is important
for keeping the code more readable. For example, one can write

call->insertAtHead(gMethodToken)

instead of
call->insertAtHead(new SymExpr(gMethodToken))

Such simplifications are important for readability. They also help move towards the day when the SymExpr node
can be removed.

void Expr::insertBefore(Expr* new_ast);
void Expr::insertAfter(Expr* new_ast);

These methods insert new Expr nodes before or after another Expr node that is already in a list. This could be an
actual in a CallExpr, a statement in a BlockStmt, a formal argument in a function, a field in a class, ...

void Expr::replace(Expr* new_ast);

This method replaces one expression that is in the AST (has a parentSymbol) with another one that is not in
the AST. It is implemented on each node type via the internal helper method called replaceChild. You cannot
replace a NULL field. To handle that case, we sometimes use the insert_help function discussed below.

Expr* Expr::remove(void);

This method removes an Expr node from the AST and updates all auxiliary pointers in the removed expres-
sion and what is left. Expr nodes can be removed from lists. They can also be removed even if they are
not in lists. In this case, the field that was pointing to this expression is set to NULL. For example, calling
block->blockInfo->remove() will remove the CallExpr node pointed to by the blockInfo field from the
AST (making all of its parentSymbol fields NULL, etc.). In addition, the blockInfo field will be set to NULL.
This uses the same replaceChild method to get to this parent pointer from within the call to this method.

void FnSymbol::insertBeforeReturn(Expr* ast);
void FnSymbol::insertBeforeReturnAfterLabel(Expr* ast);

These special-purpose insert routines also update auxiliary pointers, etc. The methods insertBeforeReturn
and insertBeforeReturnAfterLabel insert code in a function just before the return statement. The “after
label” modifier is important if want this code to execute even if we jump to this point in the code to exit (as is
done after the return statements are normalized by the normalize pass).

void FnSymbol::insertFormalAtHead(BaseAST* ast);
void FnSymbol::insertFormalAtTail(BaseAST* ast);

These methods insert formal arguments at the beginning or end of the formal arguments list of a function. The
formal arguments list is a list of DefExpr nodes. To improve readability, an ArgSymbol may be passed to these
methods. The DefExpr node is then inserted within these methods.

void insert_help(BaseAST* ast, Expr* parentExpr, Symbol* parentSymbol);
void remove_help(BaseAST* ast, int dummy=0); // dummy is never used
void parent_insert_help(BaseAST* parent, Expr* ast);
void sibling_insert_help(BaseAST* sibling, BaseAST* ast);

These functions are used to set the auxiliary pointers after an insertion, removal, or replacement. When replacing
NULL fields, it is sometimes useful to just assign them the nodes that are not yet in the AST, and then call the
insert_help function directly. In general though, these are not meant to be called outside of the methods
discussed above.

16

2.6.2 Constructors and new_Expr

As with the insertion methods discussed, constructors will also automatically insert SymExpr wrapper nodes to make for
more readable code. The following is a list of such simplifications:

• The DefExpr constructor will automatically insert SymExpr nodes around symbols passed to initialize the init and
exprType fields.

• The CallExpr constructor will automatically insert a SymExpr node around a Symbol passed to initialized the baseExpr
field.

• The CallExpr constructor can take up to four arguments to fill out the argList field. If these arguments are Symbol
nodes, they will be wrapped by SymExpr nodes.

• The CondStmt constructor can take non-block expressions to initialize the thenStmt and elseStmt blocks, in which
case a new BlockStmt node will be created to wrap these expressions. In addition, if the BlockStmt nodes passed to
this constructor are not regular (have blockInfo or blockTag set, then a new BlockStmt will be created.

The CallExpr constructor deserves extra mention. It is overloaded so that the first argument can either be a Symbol or an Expr
(to initialize the baseExpr field), or it can be a PrimitiveOp or PrimitiveTag (to initialize the primitive field), or it can be
a character string (to initialize the baseExpr field as an unresolved call using an UnresolvedSymExpr).

A relatively new way of creating Expr nodes is to use the new_Expr functions.

Expr* new_Expr(const char* format, ...);
Expr* new_Expr(const char* format, va_list vl);

These functions take a format string (see below) and a variable list of arguments and builds up an Expr node. It is meant to
be used early in compilation.

Primitives can be created by including in the format string the name of a primitive in quotes, followed by the arguments to
the primitive in parentheses. Unresolved function calls (to be resolved in function resolution) can be specified by writing
the name of the function followed by parentheses, with the arguments to the function in the parentheses. BlockStmts can be
created by delimiting the format string with curly braces. BLOCK_TYPE BlockStmts can be created by delimiting the format
string with curly braces where the word TYPE appears immediately inside the curly brace.

Expressions and Symbols can be added to the variable list of arguments by using the specifiers %E and %S respectively.

For example, the code

new_Expr("’move’(%S, foo(%S))", mytemp, gFalse)))

is equivalent to

new CallExpr(PRIM_MOVE, mytemp, new CallExpr("foo", gFalse))

This is often more readable for long sequences of expressions or statements, but not much rewriting has been done to date.
More discussion is in the commit message of commit 0dd8331 of $CHPL HOME/compiler/AST/expr.cpp.

The extensions to the insertAtHead and insertAtTail methods, as given by

void FnSymbol::insertAtHead(const char* format, ...);
void FnSymbol::insertAtTail(const char* format, ...);
void BlockStmt::insertAtHead(const char* format, ...);
void BlockStmt::insertAtTail(const char* format, ...);

make use of the new_Expr functionality above to avoid the explicit call to new_Expr.

2.6.3 BaseAST Functions and Methods

virtual void BaseAST::verify() = 0;

This method is called between passes to verify that this AST node, which is still in the AST, is valid. It checks to
make sure assumptions are valid.

17

virtual BaseAST* BaseAST::copy(SymbolMap* map = NULL, bool internal = false) = 0;

This method is used to copy an Expr, Symbol, or Type node. It is implemented in such a way so that if you copy a
BlockStmt that contains a DefExpr of some Symbol node, then that Symbol node will be copied and all uses of it
(via SymExpr, etc.) will be updated to point to the new one. This update is done via a call to update_symbols

as described below. The map that is used by update_symbols can be passed to the copy function. If none
is passed, a new one will be created. This map, from original symbols to copied symbols, will be constructed
during the copy process. It is sometimes useful to capture this map when calling copy.

The argument internal should never be passed, except internal to the implementation of copy. The imple-
mentation of copy on a particular node is implemented via the method copyInner which is also called by all
recursive copies via the macro COPY_INT.

virtual void BaseAST::codegen(FILE* outfile) = 0;

This method is used to implement the code generation pass. Although originally designed for before the AST
is normalized (and there was more nesting of expressions as well as more Expr nodes), it still works fairly well
today. This code might benefit from a revamp with the assumption of normalization, unless there remains a desire
to unnormalize so as to generate C expressions.

ModuleSymbol* BaseAST::getModule();
FnSymbol* BaseAST::getFunction();

These methods return the module/function that a given AST node resides in, by tracking back up the back pointers
(e.g. parentExpr or parentSymbol). When iterating over the statements of a function body, we can reference
the Exprs’ parentSymbol instead of calling getFunction.

virtual Type* BaseAST::typeInfo(void) = 0;
Type* BaseAST::getValType();
Type* BaseAST::getRefType();
Type* BaseAST::getWideRefType();

The method typeInfo returns the type of any expression or symbol, though before function resolution, this is
likely to be the unresolved type dtUnknown. The method getValType returns the value type of the expression
or symbol. That is, if the type evaluates to a reference or wide reference type, the value type is returned. If the
type evaluates to a value type, it is returned. The methods getRefType and getWideRefType return reference
or wide reference types.

void update_symbols(BaseAST* ast, SymbolMap* map);

This function replaces all occurrences of the key symbols in map with the value symbols in map.

2.6.4 Symbol Functions and Methods

Symbol* FnSymbol::getReturnSymbol();

This method can be used after normalization to find the symbol that a function returns. After normalization, there
is only one such symbol, and it is returned by the last statement in the function.

int FnSymbol::numFormals();
ArgSymbol* FnSymbol::getFormal(int i);

These methods return the number of formal arguments to a function and the ith formal argument.

18

VarSymbol *new_StringSymbol(const char *s);
VarSymbol *new_BoolSymbol(bool b, IF1_bool_type size=BOOL_SIZE_SYS);
VarSymbol *new_IntSymbol(int64_t b, IF1_int_type size=INT_SIZE_32);
VarSymbol *new_UIntSymbol(uint64_t b, IF1_int_type size=INT_SIZE_32);
VarSymbol *new_RealSymbol(const char *n, long double b, IF1_float_type size=FLOAT_SIZE_64);
VarSymbol *new_ImagSymbol(const char *n, long double b, IF1_float_type size=FLOAT_SIZE_64);
VarSymbol *new_ComplexSymbol(const char *n, long double r, long double i,

IF1_complex_type size=COMPLEX_SIZE_128);
VarSymbol *new_ImmediateSymbol(Immediate *imm);

These functions build new symbols to represent immediate or literal values. A cache is used so that we never
have two different symbols represent identical literal values.

2.6.5 Type Functions and Methods

Symbol* ClassType::getField(const char* name, bool fatal=true);
Symbol* ClassType::getField(int i);

These methods return a field in a class, record, or union either by matching a string name or finding the ith field
by declaration order. The argument fatal can be set to false to return NULL rather than issue an internal error.

bool is_bool_type(Type*);
bool is_int_type(Type*);
bool is_uint_type(Type*);
bool is_real_type(Type*);
bool is_imag_type(Type*);
bool is_complex_type(Type*);
bool is_enum_type(Type*);
bool isClass(Type* t);
bool isRecord(Type* t);
bool isUnion(Type* t);
bool isReferenceType(Type* t);

These functions return true if the Type node represents a Chapel type of the named category. In addition, a macro
is_arithmetic_type wraps calls to the numeric type query functions above.

int get_width(Type*);

This function returns the number of bits in a type.

2.6.6 Expr Functions and Methods

Expr* getStmtExpr();

This method returns a statement-level expression given an expression nested in another. A statement-level ex-
pression is an expression that is a statement or an expression whose parent is a statement. A statement is a
BlockStmt, a GotoStmt, or a CondStmt.

Back in the day, the Chapel IR used to distinguish between expressions and statements, even going so far as
having a statement called ExprStmt. When working on the compiler, it is worth keeping in mind that our inter-
mediate representation has been greatly simplified over time. Thus some code that may seem like it should have
been simplified from when it was first written could not have been, but it is probably worthwhile simplifying
now. That is to say, if something seems more complicated than it needs to be, it is quite possible that it is more
complicated than it needs to be now. Therefore, simplify!

FnSymbol* CallExpr::isResolved(void);

19

This method returns the FnSymbol that a CallExpr has been resolved to. This method tends to be called exten-
sively after function resolution. For primitives and unresolved symbols, NULL is returned.

bool CallExpr::isNamed(const char*);

This method returns true if the name of the function call (be it resolved or unresolved) matches the string argu-
ment.

int CallExpr::numActuals();
Expr* CallExpr::get(int index);

The method numActuals returns the number of actual expressions passed to this call. The method get returns
the indexth actual expression passed to this call.

bool CallExpr::isPrimitive(PrimitiveTag primitiveTag);
bool CallExpr::isPrimitive(const char* primitiveName);

These methods return true if this call is a primitive that matches the enumeration or string argument.

bool get_int(Expr *e, long *i);
bool get_uint(Expr *e, unsigned long *i);
bool get_string(Expr *e, const char **s);
const char* get_string(Expr* e);
VarSymbol *get_constant(Expr *e);

These functions evaluate an expression and return (or return in the reference argument) the value of the compile-
time constant that the expression evaluates to. In the event that the expression is not a compile-time constant,
the function either returns false (get_int, get_uint, the first get_string), issues an error (the second
get_string), or returns NULL (get_constant).

2.6.7 Stmt (Expr) Functions and Methods

bool BlockStmt::isLoop(void);

This method returns true if this BlockStmt node is a loop. This method is safe during the scopeResolve pass and
before. Use of this method should probably be discouraged at or after function resolution when there are more
loop types and basic blocks can be used for such control flow analyses.

int BlockStmt::length(void);

This method returns the number of Expr nodes top-level to a block. How long is this block? This may not be very
applicable as all expressions are counted (including DefExpr nodes) so what exactly is this doing? This method
is used during parsing and also appears to be used during the fast and short on-statement optimization.

Expr* CondStmt::fold_cond_stmt();

This method folds a conditional statement if the expression that evaluates to true or false can do so at compila-
tion time. This is used during function resolution to fold parameter conditionals. It is also used after function
resolution if new parameter conditionals are introduced. Such new parameter conditionals show up if a value is
changed to true or false after function resolution. Currently, this definitely does happen on occasion.

20

2.6.8 Miscellaneous AST Utility Functions

ArgSymbol* actual_to_formal(Expr *a);
Expr* formal_to_actual(CallExpr* call, Symbol* formal);

The function actual_to_formal finds the formal argument from an actual argument (expression). The function
formal_to_actual finds the actual argument in the specified call from a formal argument.

void subSymbol(BaseAST* ast, Symbol* oldSym, Symbol* newSym);

This function replaces all occurences of symbol oldSym in ast with newSym by traversing ast. This is a special
case of update_symbols which takes a map of old symbols to new symbols.

BlockStmt* getVisibilityBlock(Expr* expr);

This function returns the innermost block that could contain definitions that may be resolved to during scope
resolution or function resolution. From this block, it is a matter of searching into outer blocks, or module blocks
used by this block or outer blocks, etc.

void reset_line_info(BaseAST* baseAST, int lineno);

This helper function resets the line number in baseAST and all AST nodes traversed from this node.

2.6.9 Compilation Utility Routines

void compute_call_sites();

This function builds the call graph for the entire program represented by the AST. Each FnSymbol has a field
calledBy that is a vector of CallExprs. After this function is called, these vectors are filled with every CallExpr
that may call this function. This includes dynamically dispatched calls. This function can be used more than
once; the vectors are cleared at the beginning of the call.

void buildDefUseMaps(Map<Symbol*,Vec<SymExpr*>*>& defMap,
Map<Symbol*,Vec<SymExpr*>*>& useMap);

void buildDefUseMaps(FnSymbol* fn,
Map<Symbol*,Vec<SymExpr*>*>& defMap,
Map<Symbol*,Vec<SymExpr*>*>& useMap);

void buildDefUseMaps(Vec<Symbol*>& symSet,
Map<Symbol*,Vec<SymExpr*>*>& defMap,
Map<Symbol*,Vec<SymExpr*>*>& useMap);

void buildDefUseMaps(Vec<Symbol*>& symSet,
Vec<SymExpr*>& symExprs,
Map<Symbol*,Vec<SymExpr*>*>& defMap,
Map<Symbol*,Vec<SymExpr*>*>& useMap);

void freeDefUseMaps(Map<Symbol*,Vec<SymExpr*>*>& defMap,
Map<Symbol*,Vec<SymExpr*>*>& useMap);

void addDef(Map<Symbol*,Vec<SymExpr*>*>& defMap, SymExpr* def);
void addUse(Map<Symbol*,Vec<SymExpr*>*>& useMap, SymExpr* use);

The overloaded functions called buildDefUseMaps build def and use maps for all symbols in the entire program,
for the variables in a particular function, for the symbols in a set, or for the symbols in a set and the defs and uses
in a vector (respectively).

The defs and uses are stored in vectors of SymExprs. Both defs and uses are SymExprs. Whether a particular
SymExpr is one or the other depends on where it occurs, e.g., the left or right hand side of a move primitive.

The function freeDefUseMaps frees these maps.

21

The functions addDef and addUse can be used to add defs and uses to these maps incrementally, to avoid
recomputing when changing the AST. These maps are not maintained in general.

Two stylized loop macros allow for iteration over the defs and uses. The macro for_defs(def, defMap, sym)

declares a new SymExpr for the def argument and iterates over the vector of definitions for the symbol sym given
by the map defMap. The macro for_uses(use, useMap, sym) is comparable, but for uses.

void collectSymbolSetSymExprVec(BaseAST* ast,
Vec<Symbol*>& symSet,
Vec<SymExpr*>& symExprs);

This function traverses the ast and fills a set of Symbol nodes and a vector of SymExpr nodes with all encoun-
tered Symbol and SymExpr nodes. This set and vector can be passed to one of the above functions that build def
and use maps. Sometimes it is useful to compute these separately so that they can be reused (rather than have
them computed in a different function that builds def and use maps).

void buildDefUseSets(Vec<Symbol*>& syms,
FnSymbol* fn,
Vec<SymExpr*>& defSet,
Vec<SymExpr*>& useSet);

This function builds the def and use sets for a vector of symbols as they occur in the specified function fn. The
set defSet contains all the defs. The set useSet contains all the uses. This data structure is used during copy
propagation, reaching definitions analysis, and live variable analysis to make it fast to determine whether a given
SymExpr is a def or a use or both.

2.6.10 Optimizations and Analyses

void collapseBlocks(BlockStmt* block);

This function collapses all blocks that are unnecessary, including blocks that may introduce new scopes.

void removeUnnecessaryGotos(FnSymbol* fn);
void removeUnusedLabels(FnSymbol* fn);

The function removeUnnecessaryGotos removes unnecessary goto statements, i.e., goto statements that im-
mediately precede the label to which they go to. The function removeUnusedLabels removes labels that are
not targeted by any goto statements.

void localCopyPropagation(FnSymbol* fn);
void globalCopyPropagation(FnSymbol* fn);

These functions implement local and global copy propagation. This code is based on the algorithm described in
“Advanced Compiler Design and Implementation” by Steven Muchnick.

void eliminateSingleAssignmentReference(Map<Symbol*,Vec<SymExpr*>*>& defMap,
Map<Symbol*,Vec<SymExpr*>*>& useMap,
Symbol* var);

void singleAssignmentRefPropagation(FnSymbol* fn);

These functions attempt to eliminate references in a similar fashion to the way copy propagation tries to eliminate
variables, except this function limits itself to references that are assigned only once.

22

void liveVariableAnalysis(FnSymbol* fn,
Vec<Symbol*>& locals,
Map<Symbol*,int>& localID,
Vec<SymExpr*>& useSet,
Vec<SymExpr*>& defSet,
Vec<BitVec*>& OUT);

This function computes a live variable analysis on a function. The code is based on the algorithm described in
“Advanced Compiler Design and Implementation” by Steven Muchnick. Live variable analysis is used when
lowering iterators—The iterator class only needs to store the local variables in the iterator that are live.

void buildDefUseChains(FnSymbol* fn,
Map<SymExpr*,Vec<SymExpr*>*>& DU,
Map<SymExpr*,Vec<SymExpr*>*>& UD);

void freeDefUseChains(Map<SymExpr*,Vec<SymExpr*>*>& DU,
Map<SymExpr*,Vec<SymExpr*>*>& UD);

void reachingDefinitionsAnalysis(FnSymbol* fn,
Vec<SymExpr*>& defs,
Map<SymExpr*,int>& defMap,
Vec<SymExpr*>& useSet,
Vec<SymExpr*>& defSet,
Vec<BitVec*>& IN);

The first two functions build and free def-use (DU) and use-def (UD) chains. This code is based on the algorithm
described in “Advanced Compiler Design and Implementation” by Steven Muchnick. To build these chains, the
compiler completes a reaching definitions analysis, the code of which is based on the algorithm described in this
same book.

void deadVariableElimination(FnSymbol* fn);
void deadExpressionElimination(FnSymbol* fn);
void deadCodeElimination(FnSymbol* fn);

These functions eliminate dead code. The function deadVariableElimination eliminates variables that are
not used and otherwise unnecessary. The function deadExpressionElimination eliminates expressions that
do not need to be evaluated because they neither produce values nor have side effects. For example, a statement
consisting only of a SymExpr never needs to be evaluated—why codegen x;.

The function deadCodeElimination is based on the algorithm described in “Advanced Compiler Design and
Implementation” by Steven Muchnick. This uses def-use and use-def chains. This function calls the other two.

2.7 Primitives

Primitives implement the primitive functionality that the Chapel compiler can reason about. For example, the common
primitive PRIM_MOVE or “move” implements C-level assignment. The left-hand side, or first actual, is the lvalue and must be
a SymExpr. The right-hand side can be another SymExpr node or a CallExpr node. After normalization, this is the only case
of nested call expressions.

To elaborate, the C-level assignment x=1 is represented in AST as follows (using some pseudo-notation):
CallExpr(PRIM_MOVE,

SymExpr(VarSymbol("x")),
CallExpr("=",

SymExpr(VarSymbol("x")),
SymExpr(VarSymbol(Immediate(1)))
)

)

Here, the inner CallExpr invokes the = function that is defined in $CHPL HOME/modules/internal/ChapelBase.chpl. This
function is an implementation detail and is different from Chapel’s same-named assignment operation. The = function’s sole
purpose is to create the value that is ready to be stored into the left-hand side of the assignment operation. In simple cases
like integer literals it is just the right-hand side. In other cases it may involve, e.g., string or array duplication, depending on
Chapel’s assignment semantics for the given type. The first argument of the = function is the left-hand side of the assignment
and is there solely to indicate its type for function resolution for =.

23

2.8 Pragmas

Pragmas in internal Chapel code are translated into flags in the compiler. Flags are stored on symbols in a bit vector. They
are defined by a large enumerated type where each enumeration constant starts with the prefix FLAG_. The name of the flag
should match the name of the pragma where underscores in the flag are changed to spaces in the pragma and uppercase letters
in the flag are changed to lowercase letters in the pragma.

Flags are an important aspect of the Chapel implementation and the compiler often treats constructs specially based on flags.

The flags are manipulated via the following methods on Symbol:

bool Symbol::hasFlag(Flag flag);
void Symbol::addFlag(Flag flag);
void Symbol::addFlags(Vec<const char*>* strs);
void Symbol::copyFlags(Symbol* other);
void Symbol::removeFlag(Flag flag);

These functions check to see if a flag applies to a symbol (the symbol has a flag), add flags to a symbol (addFlags takes the
flags as pragmas (strings) and is used in the parser), copy flags (also used in the parser), and remove flags from a symbol.

3 Passes

The compiler is organized as a set of passes, each of which is a function. Compilation proceeds by calling each of these
functions in turn. Between each pass, a number of verification and cleanup tasks are completed, as explained in Section 3.34.

As the passes proceed, the assumptions about what the AST looks like change. The passes that impact these assumptions are:

• parse

• cleanup

• scopeResolve

• flattenClasses

• normalize

• resolve

• flattenFunctions

• cullOverReferences

• lowerIterators

• parallel

Notice these are all early passes. There are two major shifts and it is sometimes useful to think of the three phases of
compilation. These phases are “before normalization” (before normalize), “after normalization” (after normalize), and
“after function resolution” (after parallel). The descriptions of the changing assumptions are in the subsections related to
the passes where the assumptions change.

3.1 parse

The parse pass reads the Chapel code from a file and builds up the AST (alternatively called the IR or intermediate represen-
tation). This pass issues syntax errors.

There are relatively few assumptions that can be made about the AST at this point in compilation, other than those enforced
by the type system.

24

3.2 checkParsed

This pass checks the semantics of the Chapel code as parsed. Although we can’t do all the checks now, we can do a few. This
pass, checkNormalized and checkResolved were meant to complete all of the necessary checks. However, many user
errors are issued from other passes, and that was the case before and after these passes were introduced.

This pass checks the following:

• Are explicit argument names repeated in the same function call?

• Do any variables omit both a type and an initializer?

• Are parameters left uninitialized?

• Are configuration variables, constants, and parameters not at module scope?

• Do ’this’ and ’these’ methods omit parentheses?

• Is a return statement outside of a function?

• Do some returns in a function not return a value while others do?

3.3 cleanup

This pass is meant to clean up the AST as it is parsed. It mostly does things that can’t be done while parsing but can be done
before scope resolution. It does the following:

• Moves all function definitions that may appear in CallExprs to statement level (as defined by getStmtExpr. Prior to
this, function definitions may appear in call statements for the nested functions that the compiler inserts (such as the
functions for conditional expressions). With support for anonymous functions, this functionality could be generalized.
The iterators that are built up for sequential and parallel loop expressions are special-cased so that they are pulled
further out.

• Removes all scopeless blocks, blocks that simply group multiple statements together so that the parser can return
multiple statements when parsing a single Chapel statement.

• Destructures tuples used on the left-hand side of an assignment statement recursively, transforming the single assign-
ment into one assignment per tuple component using calls to the tuple access function.

• Move primary methods out of the type so that they appear as siblings to the type.

• Change cast expressions in where clauses to be true or false expressions involving the ISSUBTYPE primitive.

3.4 scopeResolve

The primary purpose of this pass is to resolve occurrences of names to symbols for variables, arguments, types, etc. After
this pass, the only remaining UnresolvedSymExpr nodes are for unresolved functions, which are resolved during function
resolution.

Scope resolution is a two step process. Between these steps, a number of miscellaneous actions are taken.

In the first step, the compiler constructs a symbol table that roots the declarations of symbols to a particular point in the AST
(either a BlockStmt, a TypeSymbol (for fields and methods), or a FnSymbol (for arguments or query identifiers). Multiple
definition errors are encountered at this point. The function lookup looks for a name in a scope and returns a symbol. Module
uses are taken into account, including cyclic module uses.

Then before the second step, the following actions are taken:

• All “use” statements are analyzed. The modules being used have to be looked up before we lookup general names,
because this can impact the mapping of names to symbols.

25

• The class hierarchy is constructed (dispatchParents and dispatchChildren). This has to be done before we can
lookup names of symbols, since we need to be able to find occurrences of fields in super classes from within methods.

• All named arguments using the array alias syntax are marked.

• Constructors and type constructors are built. The default constructor is used during function resolution even if user-
defined constructors will shadow it. This helps to determine the types of fields. The type constructor is used to resolve
types. Instantiating a generic type looks like a call to the constructor in terms of the generic arguments, and the type
constructor is used to resolve such types using the mechanisms of function resolution.

• The type associated with methods is resolved before resolving all other symbols because we need to know the type
associated with a method for resolving fields.

• The labels associated with goto statements are resolved. In addition, unlabeled break and continue statements are
resolved to the label associated with the innermost loop.

In the second step, the compiler tries to resolve UnresolvedSymExpr nodes by looking up their name (unresolved) in the
symbol table that was created in the first step. Function calls without parentheses are handled now, but function calls with
arguments and method invocations are handled during function resolution following a different algorithm that allows for
overloading.

Lastly, enumerated types are resolved and the symbol table is destroyed.

3.5 flattenClasses

This pass moves the declarations of nested classes to module scope. This functionality could probably be slipped into the
normalize pass. It just isn’t doing much of anything.

3.6 normalize

This pass transforms the AST into a normalized form. The transformations can be grouped into two sets, those transforms
done in the following function and those not:

void normalize(BaseAST* base);

The above function is also called when adding things to the AST after the normalize pass. That way the new addition can be
created in a compiler-writer-friendly manner but still be compliant with the AST assumptions – by invoking normalize on
the newly-created node right after inserting it into the AST. A common use is within buildDefaultFunctions and when
creating “wrapper” functions, whose job is to convert arguments from their original type to the argument type expected by
the user function they are being passed to. This happens after the normalize pass but before function resolution completes.

The normalize function makes the following transformations:

1. Handle syntactic sugar for distributions.

2. Normalize return statements so that each function has a single return statement as the last statement in the function.
Other return statements are replaced by a use of the “move” primitive to assign the result to a single return symbol
followed by a goto statement to a label immediately before the return statement at the end of the function.

3. Lower DefExpr statements for variables so that the init and exprType fields become nil, and “move” primitives are
used after the DefExpr statement to initialize the value as appropriate.

4. Lower member invocations so that a method call is transformed into a CallExpr node with a this argument, and a method
token argument.

5. Insert temporaries to avoid any nested CallExpr nodes. The single exception, and an important and widespread case, is
a “move” primitive with a CallExpr as the right-hand side argument (see Section 2.7).

6. Insert a “move” primitive around user-level invocations of assignment.

7. Call constructors for class type instantiations.

26

In addition to calling the normalize function on the AST, the normalize pass makes the following transformations:

1. Identify iterator functions based on the existence of yield statements.

2. Replace “delete” primitives with calls to chpl_destroy.

3. Lower array formal arguments to possibly generic array arguments with potential reindexing done within the function.

4. Clone methods on the complex type to work on all complex sizes.

5. Lower query identifiers in formal arguments and clone functions on queried primitive types to all sizes.

6. Identify methods of the name type and change them into constructors.

7. Call the normalize function on the entire AST.

8. Check for invalid configuration parameters.

9. Check for “use before def” errors.

10. Move functions out of a module’s initialize function since these are global functions.

11. Insert “use” scoping for functions that are called via an explicit module, e.g., M.foo().

12. Check for invalid use of “new” keyword.

13. Insert functions around any statement-level SymExpr to ensure that sync and/or single variables are read.

14. Resolve simple argument types and set argument types for arguments specified with default values but not types. The
type is taken from the default value.

15. Check for invalid destructor uses.

16. Check for invalid operator methods.

3.7 checkNormalized

This semantic-checks pass flags errors if any of the following statements are true:

• Arguments to iterators have intents.

• Iterators return types or parameters.

• A constructor accesses a member in the type or default value for any argument.

3.8 buildDefaultFunctions

This pass creates many methods, functions, and operators to support functionality, mainly on records and classes, if the user
does not supply this functionality, e.g., a writeThis method for a class. In many places, the normalize function is called on
the functions that are created here. We don’t do this before normalization because it is more difficult to determine if the user
has created a function that should replace the compiler-generated default.

In addition, this pass creates a main function if none exists.

The following functions, methods, and/or operators are created (some of which may not be overwritten by the programmer
according to Chapel semantics):

• Getter methods for every field or enumeration constant.

• Destructors for every class and record.

• Default read functions for enumerations, classes, and records.

27

• Default cast to string functions for enumerations.

• Default write functions for classes and records.

• Equality and inequality operators for records.

• Assignment functions for records, unions, and enumerations.

• Cast functions for records and enumerations.

• Copy functions for records (for use when initializing variables without a specified type).

• Hash functions for records (for use with associative domains).

• Functions that return a tuple of enumeration constants for enumerations.

3.9 resolve

The main purpose of this pass is to resolve function calls and types. After this pass, there are no more UnresolvedSymExpr
nodes.

This pass is complicated by the vagaries of the Chapel language, for better and for worse.

The algorithm for this pass is summarized as follows:

1. Mark generic functions as generic and identify arguments that are generic even though the generic type of the argument
has default values for all of its generic fields, e.g., range(?).

2. Call resolveFns (See Section 3.9.1.) on chpl_main, the main function in the program, either generated by the
compiler during buildDefaultFunctions or written by the Chapel programmer.

3. If we are compiling the runtime, which has entries other than through main, the resolve the formal arguments of these
entry points via resolveFormals and the functions via resolveFns.

4. Build the virtual method table and resolve methods that are only dynamically dispatched. This work is done in a loop
to handle the case where a method that is only resolved via a dynamic dispatch creates a new instantiation of a generic
class and this generic class results in a new method that needs to be added to the virtual method table, and then resolving
this new method results in another generic class, etc.

5. Resolve calls to chpl__convertValueToRuntimeType on any runtime type. Resolve autoCopy and autoDestroy
calls. Resolve record initialization.

6. Replace calls to potentially dynamically dispatched methods with calls via the virtual method table or with conditionals
(if there are fewer than some threshold number of such calls).

7. Clean-up the AST by inserting return temporaries for functions that return values, but which are not captured, and by
pruning the AST, including eliminating unused functions and types, eliminating method tokens, etc.

3.9.1 resolveFns(fn)

This function resolves the interior of FnSymbol node fn. When resolving, recursive calls are made to resolveFns in order
to resolve other functions that are called. Since resolveFns is recursive, we use a set to avoid resolving a function that we
have already resolved or started to resolve. The algorithmic flow of resolveFns(fn) is as follows:

1. If fn has already been resolved or is being resolved, stop.

2. If this is a var function, build a value function and resolve the value function with the setter argument set to false. Set
the setter argument to true and continue resolving the var function.

3. Insert temporaries for formal arguments to implement copy semantics.

4. Call resolveBlock (See Section 3.9.2.) to resolve the body of this function.

28

5. Determine the return type of this function by examining all of the writes to the returned symbol. If there is no best type
(a type the others can dispatch to), flag an error. Otherwise set the retType field of fn.

6. Insert casts on any MOVE primitive that requires it. This is almost certainly done to handle the case of a function
returning different types of values in different return statements. Now that the return type has been determined, the
appropriate casts can be inserted.

7. If fn is resolved as an iterator, prototype iterator records, classes, and methods. (See Section 3.9.9.)

8. If fn is resolved as a type constructor, identify the type. Resolve the type constructors of the parent type and all field
types. Also resolve the default constructor with no arguments and the destructor.

3.9.2 resolveBlock(fn)

This function resolves the body of FnSymbol node fn. It uses the traversal described in Section 2.5.2 to iterate over the Expr
nodes in the body. For each Expr node expr, the following actions are taken:

1. If expr is a SymExpr node, create a reference type for the type of the symbol if it doesn’t yet exist.

2. Call preFold on expr to handle cases before we resolve further. This may change the node to which expr points.
For example, if this is a call to the primitive GET_REF, then the compiler sees if the argument to the call is already
a value. If it is, then the call is replaced by the argument and expr is updated to point to the argument. Numerous
transformations are done during this step.

3. Resolve returned values of parameter functions.

4. Issue compiler errors when encountering the primitives wrapped by compilerError and compilerWarning.

5. If expr is a CallExpr node, update the resolution call stack and call resolveCall on expr (See Section 3.9.3.) If the
call resolves to a function, then call resolveFns on that function.

6. Call postFold on expr to handle cases before we resolve further. This does many transformations on the AST and,
like preFold, may change the node to which expr points, which will impact the traversal (the next node to which
expr points).

3.9.3 resolveCall(call)

This function resolves the CallExpr node call. If the call is to an unresolved function, the algorithm proceeds as described
in the language specification, more or less. If the call is to a primitive, transformations may be done on the AST similar to
those done in preFold. In addition, the MOVE primitive is “resolved” in order to determine the type of any symbol on the
left-hand side, or to do type checking if this symbol has already been resolved.

3.9.4 Wrappers

When resolving function calls, the actual arguments may not match the formal arguments in a one-to-one mapping with exact
type matches. Such cases occur with implicit coercions, with default values for arguments, with named-argument passing, and
with scalar promotion. To handle these cases, wrappers are created during function resolution, and marked with the “inline”
flag. The wrappers are created using caches to ensure we don’t create the same wrapper multiple times. This is necessary to
avoid creating multiple instances of a type when there should just be a single type.

The default wrapper calls a function after inserting extra actual arguments into the call. The order wrapper calls a function
after rearranging the arguments which can be in the wrong order due to named-argument passing. The coercion wrapper
calls a function after casting arguments to other types. This includes dereferencing an actual argument that is a reference
and reading the value in a sync or single type. The calls to readFE and readFF may be inserted in coercion wrappers. The
promotion wrapper calls a function within a loop. The promotion wrapper is implemented as an iterator. Parallel promotion
is handled by creating leader and follower iterators.

29

3.9.5 Generic Instantiation

Generic instantiation of functions occurs during function resolution. Calls to functions that are generic are resolved at the
same time as calls that are not generic. When a generic call becomes a candidate for function resolution, it is instantiated and
its where clause is evaluated. If it is selected, then it is resolved. This means, among other things, that calls in the where
clause may be resolved even if the function is ultimately not resolved.

3.9.6 Runtime Types

Certain types in Chapel, such as array and domain types, are not purely static. They contain dynamic information. For
example, the array type is largely static, being composed of an element type and a domain type, but the domain value is also
part of the array type. This is even suggested by Chapel syntax where the value of the domain appears in an array type.

To handle these runtime types, the compiler replaces such types by values during function resolution. Thus if a function has a
type argument and it is called with an array type, the type argument will not be eliminated from the function during function
resolution but will rather be replaced by a value argument with a type that is the type of a runtime type value.

The pragma “has runtime type” is used to implement runtime types in a fairly general way. This pragma must be applied
to the record type that has dynamic information associated with it and with a function that builds a value of that record type
based on the arguments passed to the function. For example, for arrays, this is applied to a function as follows:

pragma "has runtime type"
def chpl__buildArrayRuntimeType(dom: domain, type eltType) type
return dom.buildArray(eltType);

The runtime type is thus composed of two fields: a domain (value) and an element type (type). When creating a value from
a runtime type, a call to this function will be inserted by the compiler, passing the values in the runtime type value to the
arguments of this function.

In addition, a function called chpl__convertValueToRuntimeType must be defined that takes a value of the record and
calls the function with the pragma. When determining the type type of a value of the record type, a call to this function will
be inserted by the compiler.

In Chapel, in addition to arrays, domains have runtime types consisting of the value of their distribution. For sparse domains,
the dense parent domain is also part of the runtime type.

The compiler does not currently correctly handle records or classes composed of fields that have runtime types. That is, if the
type of a tuple of an array is passed to a function, the runtime type of the array component will be lost, to unfortunate effect.

3.9.7 Scalar Promotion Types

Scalar promotion keys off a type field of a class that identifies the type of scalar over which an aggregate promotes. During
function resolution, this type is identified and then used when selecting candidates during overload resolution.

The implementation relies on a field called _promotionType in the Chapel type. For this reason, the implementation can
easily be extended to user-defined types should the language be changed to expose such functionality to a user-defined class.

3.9.8 Conditional Resolution and Try Tokens

Function resolution can be done conditionally based on a “try token” called gTryToken. This global symbol can be used
in the conditional expression of a conditional statement. When encountered by function resolution, the compiler will try to
resolve the then-statement. If this is successful, the conditional statement will be replaced by the body of the then-statement.
If not, the conditional statement will be replaced by the body of the else-statement, and resolution will continue on the
else-statement as normal.

This is used to attempt to parallelize reductions. The parallel iterator is called in the then block. In the else block, the serial
iterator is called and a compilerWarning call is made to indicate that the reduction has been serialized.

30

3.9.9 Iterator Handling During Resolution

The iterator is resolved as if it is a normal function where the yield statements are treated identically to return statements
in terms of resolving the return type. In addition, the iteratorInfo field is created, as are stubs for the iterator class, the
iterator record, and the methods and functions. These are described in more detail in Section 3.14, which also describes the
lowerIterators pass.

A function _getIterator is created during function resolution that takes as an argument the iterator record and returns the
iterator class. Such functions are resolved when actually iterating over a loop. In short, the reason to have both an iterator
record and an iterator class is to make memory management simpler. It is easier to free the iterator classes since we just
allocate them at the beginning of the loop. Iterator records are copied as necessary. The semantics of invoking an iterator
multiple times after the iterator record has been created is ill-defined—this happens when an iterator is passed to a generic
function and the captured argument is iterated over twice. When iterators are assigned to variables, an array is created. When
iterators are passed to generic arguments, the iterator record is captured.

The links to the leader and follower iterators are created during function resolution by creating a function that calls the leader
or follower from the TO_LEADER and TO_FOLLOWER primitives.

3.9.10 The Dream of Out-of-Order Resolution

There are a number of non-working tests (futures) that are expected to work should function resolution work if the strict
ordering constraint on it now is removed. The dream is that the compiler could have a queue of functions that need to be
resolved. Then if it fails for any reason, it could continue on the other functions. There are a number of places where odd
calls to resolveFns or resolveCall could be removed.

This would be especially useful with code like:

module M1 {
use M2;
var a = 1;
var b = c;

}

module M2 {
use M1;
var c = 2;
var d = a;

}

In this example, the compiler is going to try and fail to resolve one of the module initialization functions first. If it could start
resolving one, and then switch to the next when failing to resolve the type of either b or d, then it would be able to finish
resolving the first later.

3.9.11 The Dream of Combined Scope and Function Resolution

In order to be able to declare variables or use modules in conditional statements where the conditional is a parameter such
that the variable or module is visible in the outer scope, scope resolution and function resolution would have to be done at the
same time. This would involve maintaining a symbol table while resolving function calls and types. It would also involve a
bit of rearrangement of the compiler since there are a number of things that are done on the whole program between scope
resolution and calls to resolveFns on particular functions.

3.10 checkResolved

This semantic-checks pass flags errors if any of the following statements are true:

• Control may reach the end of a function that returns values.

• Functions return nested iterators (perhaps loop expressions).

• An enumeration constant is not a compile-time constant.

31

3.11 flattenFunctions

This pass collects all nested functions (the DefExpr of the FnSymbol is in another function, i.e., the parentSymbol of
the defPoint of the FnSymbol is another FnSymbol) into a vector of nested functions that is then passed to the following
function:

void flattenNestedFunctions(Vec<FnSymbol*>& nestedFunctions);

This function denests all of the functions in the vector argument. Outer variables are identified and passed to the nested
functions by reference. This is done in total because one nested function could call another nested function that needs
additional outer variable references.

This functionality is encapsulated so that it can be used elsewhere. In particular, this function is also called when inlining a
loop body into a recursive iterator to flatten the nested function that implements the loop body during the lowerIterators
pass. Also, this function is also called during the parallel pass when nested functions are created to implement begin,
cobegin, coforall, and on statements.

3.12 cullOverReferences

This pass has two distinct but related purposes. The first purpose is to replace all calls to the reference version of var functions
that do not need the reference into calls to the value version of the same function. The value version can be arbitrarily different
due to the existence of the implicit “setter” argument that is true if the var function is used as an lvalue and false otherwise.
Therefore, it is essential that this transformation be correct—it is not merely an optimization.

The implementation of the code that completes this first purpose relies on def and use maps to let the compiler determine if a
reference really needs to be a reference.

The second purpose is to remove all references of array wrapper records, domain wrapper records, and iterator records. This
is essential since returning such a reference could result in a reference to something that is not on the stack. Meanwhile, we
do not want to put these things on the heap since the classes within the wrapper records are already on the heap.

3.13 callDestructors

The primary purpose of this pass is to insert calls to destructors for values when they go out of scope, including records,
arrays, and domains.

The first thing this pass does is to call fixupDestructors. This function inserts functionality into destructors. It inserts
calls to the destructors of all value fields (because these should be called automatically). It also inserts calls to the destructor
of the parent class.

The function insertAutoDestroyTemps inserts the calls to destructors for variables when control exits their declaration
scope. This requires an analysis to determine if control may or must exit the scope.

A large amount of code handles functions that return records because the compiler wants to insert code to free the record
when it goes out of scope but the record is going to return it to the callsite. This is handled by returning records through
reference arguments. Then the compiler can free the record if it is assigned by value.

Lastly, this pass builds up a function to call destructors on global variables.

3.14 lowerIterators

In summary, this pass lowers an iterator, be it a serial iterator or a follower (leaders are always inlined). An iterator is lowered
into a class whose methods can be called in a loop to implement the functionality of this iterator. Before each iteration, a “has
more” method can be called to see if the iterator is finished. If it is not, an “advance” method can be called to get to the next
value and a “get value” method can be called to get the current value. The class is used to save state. Both the “has more”
and “get value” methods are very simple. The “advance” method looks like the original iterator function, but there is a jump
table at the beginning to return to the points in the code that immediately follow yield statements, and fields in the class store
state for repeated calls to this function.

32

For each resolved iterator in the Chapel program, including each instantiation of every generic iterator and each iterator that
implements a particular promotion wrapper, a class called IteratorInfo is created. This class has the following fields:

• IteratorTag tag identifies whether this iterator is a serial iterator, a leader iterator, or a follower iterator.

• FnSymbol* iterator points to the original iterator function. During this pass, this original function is transformed
into a function that returns an instance of the iterator record.

• FnSymbol* getIterator points to the _getIterator function created during function resolution that takes an
iterator record and returns an iterator class.

• ClassType* iclass points to this iterator’s implementing class. This class is created during this pass. The iterator
class is only instantiated when using the iterator in a loop. It is destroyed when the loop completes.

• ClassType* irecord points to this iterator’s implementing record. This record is created during this pass. The
record is constructed by the getIterator function. The distinction between the iterator record and the iterator class
makes it easier to free memory optimally because only the iterator record is bandied about. The iterator class is used in
a much more structured way.

• FnSymbol* advance is a method on the iterator class that updates the state of the iterator so that calls to the getValue
method can return the next value.

• FnSymbol* zip1, FnSymbol* zip2, FnSymbol* zip3, and FnSymbol* zip4 are methods that implement code
specialized for iterators with a single yield in a single loop.

• FnSymbol* hasMore returns true if the iterator is not finished.

• FnSymbol* getValue returns the value that the iterator is currently ready to return.

If iterators are not zipped and are not recursive and have a single yield statement, we implement them with straightforward
inlining. That is, inline the iterator in place of the loop, and replacing the yield and return statements with copies of the loop
body.

3.14.1 Single Loop Iterator Optimization

The single loop iterator optimization is important for generating code with optimal control flow when a common class of
simple iterators are zippered together in a loop, or when inlining is not done. This common class of simple iterators can be
described as any iterator with a single yield statement that is immediately in a single loop statement that is immediately in the
iterator function. Without this optimization, goto statements will be used with the control flow to implement the jump table.
This optimization creates zip methods, labeled zip1 through zip4, that implement the functionality of the sections of code
marked in the following code:

def iterator() {
// zip 1
loop {
// zip 2
yield value;
// zip 3

}
//zip 4

}

3.14.2 Recursive Iterators

Recursive iterators are identified. We used to avoid inlining recursive functions altogether, but the compiler now has initial
capability to inline the loop body into the recursive function at the yield points. This could be especially clean with function
pointers, but we currently inline the loop body, and move the iterator so that it is a nested function.

In making the recursive function call, care is taken to avoid inlining the function again at the place where the loop is invoked.

Recursive iterators with on-statements, perhaps a common case one day, require careful coding in order to avoid superfluous
remote references. The arguments passed to the recursive call are copied locally.

33

3.14.3 Iterators and Local Blocks

Inlining iterators is a bit tricky in the presence of local blocks which impose restrictions to the code lexically with the local
block. To ensure that the body of the loop is not restricted to local functionality, the compiler counts the number of local
blocks around yield statements before inlining, and then inserts a corresponding number of unlocal blocks around the loop
body.

When not inlining, the local blocks also need to be handled with care. To do this, the compiler fragments the local blocks
within an iterator so that control flow constructs do not appear within the local blocks. That is, a single local block may be
split into multiple local blocks to avoid having control flow within the local block.

3.14.4 Miscellaneous Notes

A few notes about the implementation:

• When iterators are being lowered, the compiler inserts coded, but bogus, GET_MEMBER primitives to access the fields
of the iterator class. These bogus primitives use numbers instead of fields because the fields have not yet been created.
This impacts functionality during this time since we cannot determine the type of such primitive expressions.

• The compiler uses live variable analysis to determine what local variables are live at the points where the iterator yields
values. Only these variables need to be represented by fields in the iterator class. If live variable analysis is not used,
the compiler creates a field for every local variable.

3.15 parallel

This pass originally transformed the code to interface with the tasking runtime (the first and last steps below), and that was
all. From a historical perspective, this pass enabled multithreading (before its introduction, execution was serial), hence its
name. That said, this pass has a terrible name.

The current implementation of this pass takes the following actions in the following order:

1. Transform all begin, cobegin, coforall, and on blocks into nested functions and flatten them. Prior to this pass, these
constructs are represented as BlockStmts with a primitive blockInfo field.

2. Run the optimization called remote value forwarding on all flattened nested functions created above. This optimization
looks for functions that take references and replaces them with values if possible. Flattening of nested functions
introduces reference arguments to handle the outer variables (as described in Section 3.11). Thus the function created
to handle an on-statement will take reference arguments to any variables declared outside of the on-statement.

This optimization is currently much more conservative than it should be. A reference argument is changed into a
value argument if the reference is never written to and if there are no calls to any functions involving synchronization
within the body of the function. These are flow-insensitive checks, but this optimization could benefit from being
flow-sensitive. For example, it may be worthwhile to pass in both the reference and the value if it is read before it is
written. In addition, if the reference is read before any call to a synchronizing functions, it can be passed as a value.
Essentially what this optimization is doing is to move the read up to the point where the function is called (or where the
on-statement is executed). This optimization uses def and use maps as well as the call graph.

3. Reprivatize privatized-object fields (array and domain descriptors may be privatized) in Iterator classes (reprivatizeIterators).
That is, code is inserted when accessing such fields to get the local private copy. This is not necessary with arbitrary
classes and records because their fields will never capture privatized objects. Instead, they will always capture priva-
tized IDs which can then be changed into objects at the point they are used. The IDs map to the privatized copy of a
class on any given locale. Iterator classes, on the other hand, are built up by the compiler. If the privatized object (as
opposed to the ID) is added to the class, then we may be pointing at a remote object when there is a local object that
we could be pointing at.

4. Move stack-allocated data onto the heap as necessary (makeHeapAllocations). This function uses def and use maps
to trace references through begin- and on-statements (or rather the functions that implement them). The data that such
references point to needs to be put on the heap. For begin-statements, this has to happen because the begin-statement

34

can return before the function completes. For on-statements, this has to happen because remote communication can
only involve data on the heap.

This function also takes care of inserting code to broadcast the values in global constants so that each locale can access
these values directly. Other globals are put on the heap and set up so that the references on every locale other than
locale 0 points to the heap on locale 0.

At the end of the function makeHeapAllocations there is a call to freeHeapAllocatedVars that duplicates some
functionality in an effort to free such heap-allocated structures. This code is incomplete in a number of ways. A
noticeable limitation is that we won’t be able to free heap-allocated structures completely until the compiler inserts
code to reference count the number of tasks that can access such structures. This should probably not be universal since
there will be simple cases where the reference count will not be necessary and where the performance hit (time and
space) should be avoided.

5. Handle the implementation of the EndCount class used to implement sync statements, including the implicit sync
statement around main. Accesses to this class are implemented via primitives GET_END_COUNT and SET_END_COUNT

up to this point. The compiler threads EndCount variables through functions by adding arguments to these functions.

6. Bundle arguments to functions that implement begin, cobegin, coforall, and on statements. The tasking runtime invokes
such functions via a pointer to a function that expects one argument. Thus the compiler changes these functions so that
they expect only one argument. Structs are created to capture the multiple arguments.

3.16 prune

The prune pass, run again after the pass called localizeGlobals, has a narrow focus. During this pass, the compiler
identifies unused functions and types, and removes them from the AST.

3.17 complex2record

This pass replaces the primitive complex types dtComplex with records composed of two floating-point values, one for the
real part and the other for the imaginary part. All occurrences of the primitive types are replaced with the new records. The
primitives GET_REAL and GET_IMAG are replaced with the primitive GET_MEMBER. Henceforth in compilation, the primitive
complex type is of no concern.

3.18 removeUnnecessaryAutoCopyCalls

This optimization pass removes redundant calls to the auto copy mechanism used to implement memory freeing on values,
including arrays and domains. This pass attempts to match calls to the “auto copy” function with calls to the “auto destroy”
function and cancel them out. Since the “auto copy” and “auto destroy” functions may increment and decrement sync variables
for reference counting arrays and domains, this optimization can significantly improve performance.

3.19 inlineFunctions

This optimization pass inlines all functions that are marked by the “inline” flag. Line numbers are updated to the call site.
Before a particular function is inlined, optimizations like copy propagation are called on that function to try to reduce the
amount of code that has to be replicated.

This pass also calls the functions collapseBlocks and removeUnnecessaryGotos (see Section 2.6.10) on every function.

3.20 scalarReplace

This optimization pass replaces some variables of some record types by multiple variables, one for each field in the record.
The order of replacement is based on a topological sort of the types to avoid replacing variables assigned to fields.

This pass calls eliminateSingleAssignmentReference, described in Section 2.6.10, to eliminate a case that would
otherwise disable this optimization.

35

In addition to the fairly straightforward code needed to scalar replace records, this pass also tries to scalar replace classes that
are used in a stylized way. In particular, this pass tries to scalar replace iterator classes. In general, scalar replacing classes
would not work since they are references and not values. For iterators, this is an important step in enabling many of the more
traditional optimizations run later.

3.21 refPropagation

This optimization pass calls singleAssignmentRefPropagation, as described in Section 2.6.10, on every function.

3.22 copyPropagation

This optimization pass calls localCopyPropagation, deadVariableElimination, and globalCopyPropagation in
that order on every function. These functions are described in Section 2.6.10.

3.23 deadCodeElimination

This optimization pass calls deadCodeElimination, as described in Section 2.6.10, on every function.

3.24 removeWrapRecords

This optimization pass runs a variation of scalar replacement on the wrapper records for arrays and domains. Since these
records only have one field, they can be removed completely and all uses of these types can be replaced by the field type.
Unlike in scalar replacement where a type may have multiple fields, variables are replaced by only one other value by this
optimization. The field in question is _value.

This is more involved because these wrapper records also contain a field called _valueType. However, this field is only used
for type information during function resolution (since privatization changes the _value field into an integer). Therefore,
before doing the replacement described above, references to _valueType are first eliminated. This code relies on dead code
elimination, inlining, and copy propagation, so if any of these optimizations are disabled, this pass is skipped.

3.25 removeEmptyRecords

This optimization pass removes all empty record types, and all variables and arguments with these types.

3.26 localizeGlobals

This optimization pass creates temporaries at the top of functions to capture global constants. This optimization was especially
important on the Cray XMT (TM). In any event, since constants in Chapel cannot be identified as constants in C, this seems
like a worthwhile optimization. This optimization does not handle the case where a function that reads a global constant is
called from another function in a critical loop.

This optimization is a good one for the argument against source-to-source compilation, or at least source-to-source compila-
tion to C. If the compiler did handle the above case (a function called in a critical loop), it would have to pass the constant
into the function as an argument. Thus all constants may be passed around to functions, but that is clearly not optimal either.
Such thinking must be weighed against the advantages of source-to-source compilation, namely portability.

3.27 returnStarTuplesByRefArgs

This pass changes all functions that return star tuples into function that take, as arguments, references to these star tuples and
assign the values into these references. This pass also changes all SET_MEMBER, GET_MEMBER, and GET_MEMBER_VALUE

primitives into PRIM_SET_SVEC_MEMBER, PRIM_GET_SVEC_MEMBER, and PRIM_GET_SVEC_MEMBER_VALUE primitives.
These are used on star tuples. The other primitives were used on star tuples which are stored as records with fields in the AST.

36

3.28 insertWideReferences

This pass introduces wide references and wide classes into the AST. A wide reference is a reference to something that may
exist on a different locale. It is generated as a struct with two fields: a locale number and an address. In the AST, wide
references are represented as records with two fields: a locale number and a reference. Since classes are references, they too
can be wide. A wide class is represented as a record with two fields: a locale number and a class. In both cases, the address
or class reference is only valid on the locale indicated by the locale number.

This pass consists of the following steps:

1. Create a wide reference type for every type and a wide class for every class. This includes both wide references to
classes and wide references to wide classes. Fortunately, there are no references to references, references to wide
references, wide references to references, or wide references to wide references. Because enough is enough!

2. Change all occurrences of references into wide references. The primitives do not have to change in substantial ways
in that the primitives that work over references also work over wide references. There are some simplifications that
are necessary, however. For example, the compiler inserts code to dereference wide references to wide classes in some
primitives so that the double remote access will not happen in the same primitive.

3. Create a function to allocate all global variables on the heap on locale 0 and set up wide references to these global
variables on other locales.

4. Transform the code in local blocks to check that wide references are local (unless checks are disabled). This optimiza-
tion analyzes the code in local blocks for places where wide references or wide classes are accessed such that remote
communication may occur. In this case, a check is inserted to ensure that the wide referene is local to the current locale,
and a narrow reference is inserted to capture the address. Note that wide references can be moved into other wide
references even if they are not local, since this does not require communication.

5. Call narrowWideReferences to replace wide references and wide classes with narrow references and narrow classes
if the compiler can prove that this is legal to do.

3.29 optimizeOnClauses

This pass marks functions that implement on-statements with the “fast on” flag if they can be executed directly by the handler
on the remote locale (rather than being handled by a separate thread on the remote locale). This requires that the code be
simple (no synchronization, no remote memory accesses, etc.) and relatively fast.

3.30 insertLineNumbers

This pass inserts line numbers and filenames into functions and calls to these functions so that errors that show up in the
internal modules will pinpoint code that the Chapel programmer should know something about. That is, if a primitive is
called in an internal module, then this pass will add two arguments to the function containing the primitive call. If the callsite
to this function is in user code, that line number and filename will be added to the call. Otherwise, the compiler recurses to
the function that that function is called in.

The compiler takes care to pass line number and filename information through argument bundles created during the parallel
pass for functions called indirectly in the runtime.

3.31 repositionDefExpressions

This pass moves DefExpr nodes into the innermost BlockStmt nodes that they can legally be declared within. This decreases
the scope of the declaration. This is essential for compiling with certain pragmas on the Cray XMT (TM) where declarations
must be inside a parallel loop to avoid races due to assigning values to variables shared between iterations.

This optimization currently looks at all occurrences of local variables in a function and determines what block these variables
should be declared within based on these occurrences. This may be insufficient if the compiler ever generates code where a
variable may be live in a block outside of any of its uses. With the iterator transforms, and its loops and goto statements, this
may indeed be possible.

37

3.32 codegen

This pass generates C code from the AST. All declarations, function prototypes, etc., are place in single header file called
chpl__header.h. C code for each module is put into a separate C file. All of these files are included by a file called
_main.c which is compiled in the makeBinary pass.

To compile each module, the compiler invokes the codegenDef method on the ModuleSymbol node. The recursive functions
codegenDef and codegen generate the code. This design makes fewer assumptions about the normalized form than it can.
In particular, it assumes there may be deeper recursion than will actually occur given normalization.

One of the more elaborate parts of code generation relates to the generation of primitives. This is complicated by the reference
semantics since the code we generate for many primitives depends on whether the type of the argument is a reference or not.

3.33 makeBinary

This pass invokes the C compiler and linker via the Makefile created during the codegen pass.

3.34 What Happens Between Passes?

There are two main actions that take place after each pass. First, the compiler traverses the AST and the global vectors of all
AST nodes, and removes all AST nodes that are not in the AST, reclaiming the memory. Second, the compiler verifies, via
verify methods on all node types, that the AST is in a coherent state. This could be turned off for non-developers to save time.

In addition, each pass is timed and these times are printed if using the –print-passes flag and statistics are gathered and printed
if using the –print-statistics flag.

4 Miscellaneous

4.1 Compiler Strings

Strings are canonicalized via the function astr. This function can take up to 8 string arguments that are concatenated together.
The strings are stored in a large hash table called chapelStringsTable. During compilation, we typically canonicalize
strings, which allows them to be compared via a pointer comparison (faster than strcmp). The hash table of strings is freed
when the compiler completes.

Additionally, the function istr can convert an integer to a canonicalized string.

38

