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Abstract

As big data becomes more and more prevalent in day-to-day comput-
ing, there is a need to be able to deal with large sets of data. However
conventional systems such as Hadoop and Hive rely heavily on a divide
and conquer method distributed throughout a cluster of computers. This
method has been proven to be extremely efficient at a number of tasks,
however this method can lead to problems when dealing with data in
a contextual, iterative or interactive environment. In this document we
not only offer an implementation of a framework that allows in mem-
ory MapReduce operations in Chapel and shows the benfits that can be
acheived this way, but also offers up an API so that it can integrate seam-
lessly with other filesystems.

1 Introduction

Chapel is an emerging parallel language being developed by Cray Inc. with the
goal of improving programmer productivity on large-scale systems as well as on
the desktop. It has been developed with the goal being to a large extent the
standard HPCesque battery of programs which in the large majority of cases do
not involve heavy string based processing, and up until recently this held true
with the vast majority of HPC applications.

However, with the event of big data, and especially looking at iterative
programs we see that in many cases these programs can benefit from an in
memory MapReduce as demonstrated in [2], in which the files data is read in
and worked on the node that hosts that data - retaining the data on that node
until it is told that it is no longer needed - and doing MapReduce operations
using these nodes.

We assert that Chapel could work quite well in this framework. In this
document we explore how to go about adding MapReduce operations to Chapel
as well as how this might benefit the user not only in terms of speed, but also
in terms of user productivity.



2 API

There are four APIs exposed.

e A Systems Level API that is the glue code between the Chapel runtime
and the filesystem. (qio_plugin hdfs.c/h)

e A user-level IO API that interfaces with the system API, as well as pro-
vides the interface for the MapReduce API. (HDFS.chpl)

e A way to parse from the IO interface in Chapel to records in Chapel.
(RecordParser.chpl)

e A MapReduce API that interfaces with the IO system and RecordParser
in Chapel. (HDFSiterator.chpl)

2.1 Runtime API

Throughout this section, the names that we use in the description of the function
pointer are the names of those function pointers in the qio_file functions_t
struct. The Runtime API currently consists of Several functions:

e readv Implements a function that has the same semantics as readv in
POSIX.1-2008. It takes in a user defined filesystem struct which contains
all the information that the file system needs in order to work. The iovec
argument is already allocated.

1 typedef qioerr (*qio_readv_fptr)

2 (void*, // plugin file pointer

3 const struct ioveck,

4 // Data to write into

5 int,

6 // number of elements in iovec

7 ssize_t*);

8 // Amount that was written into iovec

e writev Implements the same sematics as writev in [POSIX.1-2008.

1 typedef qioerr (*qio_writev_fptr)

2 (void*, // plugin fp

3 const struct ioveck,

4 // data to write from

5 int,

6 // Number of elements in iovec
7 ssize_tx*);

8 // Amount written on return

preadv Implements a function which does a positional read of the file and
puts the results in the iovec argument which is already allocated.

1 typedef qioerr (*qio_preadv_fptr)
2 (void*, // plugin fp
3 const struct iovec*,
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// Data to write into

int,

// number of elements in iovec

off_t,

// Offset to read from

ssize_t*);

// Amount that was written into iovec
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pwritev does a positional write of the file that is referenced by the plugin
filepointer from the contents stored in the argument to iovec. It returns
the number of bytes written on return.

1 typedef qioerr (*qio_pwritev_fptr)

2 (void*,//plugin fp

3 const struct ioveck,

4 // data to write from

5 int,

6 // Number of elements in iovec
7 off_t,

8 // offset to write

9 ssize_t*);

0 // Amount written on return

e seek Implements the semantics of 1seek in POSIX.1-2008.

1 typedef qioerr (*qio_seek_fptr)

2 (void*, // plugin fp

3 off_t, // offset to seek from

4 int, // Amount to seek

5 off_t*);// Offset on return from seek

filelength Returns the length of the file in bytes that is referenced by
the plugin filepointer.

1 typedef qioerr (*qio_filelength_fptr)

2 (voidx*, // file information
3 int64_t*); // length on return
e getpath Returns the path to the file that is referenced by the plugin

filepointer.

1 typedef qioerr (*qio_getpath_fptr)
2 (void*, // file information
3 const char*x);// string/path on return

e open Opens the file on the configured filesystem pointed to by the path
passed in as the second argument. The plugin filepointer (which is user
defined) is finished being populated here. The user also at this point needs
to also set the flags for the file (for more information see and .
open expects a configured filesystem passed in as the last argument to the
function.
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typedef qioerr (*qio_open_fptr)
(void**, // the plugin fp on return
const char*, // pathname to file
int*, // flags out
mode_t, // mode
qio_hint_t, // Hints for opening the file
voidx*); // The configured filesystem

close Closes the file pointed to by the plugin filepointer. Has the same
semantics as close in [POSIX.1-2008.

typedef qioerr (*qio_close_fptr)
(voidx*); // file fp

fsync Provides the same functionality as fsync in |[POSIX.1-2008|

typedef qioerr (*qio_fsync_fptr)
(void*); // file information

getcwd replicates the semantics of getcwd in POSIX.1-2008.

typedef qioerr (*qio_getcwd_fptr)
(voidx, // file information
const char**); // path on return

The struct qio_file_functions_t represents all the functions needed within
QIO in order to implement the functionality needed for file IO in Chapel.
This is loaded into the QIO representation of the file at initialization and
the user is responsible for populating this struct before passing it into the
QIO runtime code.

typedef struct qio_file_functions_s {

qio_writev_fptr writev;
qio_readv_fptr readv;

qio_pwritev_fptr pwritev;
qio_preadv_fptr preadv;

qio_close_fptr close;
qio_open_fptr open;

qio_seek_fptr seek;

qio_filelength_fptr filelength;
qio_getpath_fptr getpath;

qio_fsync_fptr fsync;
qio_getcwd_fptr getcwd;

void* fs; // Holds the configured filesystem

} qio_file_functions_t;
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Where the void* fsin qio_file functions_t holds the configured file system.
This way we can support calling functions that are not dependent upon opening
the file on a file system (e.g. calling getpath or getcwd).

The various types of information needed by the file system in order to read
and write files is passed around as a user defined struct in a void* (the plugin
fp). This way we can support any filesystem since we no longer have to worry
about the number of arguments to these functions. Therefore the library writer
is responsible for packing the arguments into - and extracting the arguments
from - the plugin fp.

The library writer is also responsible for writing the wrapper functions
around the calls to the filesystem so that it conforms with this API. This way
we can report appropriate errors as well as supporting as many filesystems as
possible.

The only other function needed in order to create an interface with QIO
is to implement a function that populates the qio_file functions_t struct
(the number of arguments to such a function can be arbitrary and user de-
fined). Hereafter we will call this function create_qio_functions. This will
then be an interface to the module level code. The way in which we pass this
information through to the QIO runtime is via the function in runtime called
qgio_file_ open_access_usr which is called by open in the Chapel module level
code and is the last argument to the function (the rest of the arguments are the
same as qio_file_open_access).

This now brings us to a discussion of the module level API to the runtime.

The module-level API for the runtime is almost trivial and depends only on
create_gio_functions. The way the library writer would interface with the
runtime at the module level would be along the lines of

extern proc create_qio_functions(...):
qio_file_functions_t;

proc myOpen(...): file {
var err: syserr = ENOERR;

var fsfns = create_qio_functions(...);
err = qio_file_open_access(..., fsfns);

2.2 User API for HDFS
2.2.1 Types

The types defined by the HDFS module are as follows:

record hdfsChapelFile {
var files: [rcDomain] file;

}

Which is a wrapper around a replicated array of files; one per locale. (i.e. a
“Global file” in a sense)
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record hdfsChapelFileSystem {
var home: locale;
var _internal_file: [rcDomain] c_ptr;
// contains hdfsFS

}

This is almost the same as hdfsChapelFile, except this time instead of repli-
cating a file across each locale, it replicates the configured file system across
each locale.
record hdfsChapelFile_local {
var home: locale = here;
var _internal_:qio_locale_map_ptr_t
= QIO_LOCALE_MAP_PTR_T_NULL;
}

Represents a mapping of a localeld to a specific byte range in the file.

record hdfsChapelFileSystem_local {
var home: locale;
var _internal_: c_ptr;

}

Represents a configured file system pointer.

2.2.2 Functions

hdfsChapelConnect (name: string, port: int): fs;

Connects to HDFS with name name and port port and replicates across all
locales on the machine. This way there is a valid way to reference this other
then from the locale it was called on.

fs.hdfsChapelDisconnect () ;

Disconnects (on each locale) from the file system fs connected to by hdfsChapelConnect

fs.hdfsOpen(filename: string,
flags: iomode): hdfsChapelFile;

Opens a file with path pathname and in mode flags on each locale from the
file system that was connected to via hdf sConnect. The only possible iomodes
are iomode.r and iomode.cw (due to HDFS constraints).

hdfsChapelFile.hdfsClose();
Closes the files created by fs.hdfsOpen.

hdfsChapelFile.getLocal: file;

Returns the file for the current locale that you are on when this function is
called.

hdfs_chapel_connect(path:string, port: int):
hdfsChapelFileSystem_local;

Same as hdfsChapelConnect except that this only creates a valid file system
on the locale it was on when it was called.
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hdfsChapelFileSystem_local.hdfs_chapel_disconnect();
Disconnects from HDFS.
getHosts(f: file);
Returns a C array of structs of the form
{(locale_id, start_byte, length), ...}
which can be accessed via
getLocaleBytes(g: hdfsChapelFile_locale, i: int);

The only other things added to the current IO functionality is a convenience
function

hdfsChapelFile.hdfsReader(...): channel;

Which takes in the same arguments as the standard file.reader function.
After this, all other functionality is supported. An example of this is:

use HDFS;

var gfl: hdfsChapelFile;
var hdfs: fs;

hdfs
gfl

hdfsChapelConnect ("default", 0);
hdfs.hdfsOpen("/tmp/advo.txt", iomode.r);

for loc in Locales {
on loc {
var r = gfl.hdfsReader(start=50);
// same as:
// var r = gfl.getLocal.reader(start=50);
var str: string;
r.readline(str);
writeln("on locale.", here.id, "_string:," + str);
r.close();
}
}
on Locales[2] {
gfl.hdfsClose();
}

on Locales[1] {
hdfs.hdfsChapelDisconnect () ;
}
/* outputs:
on locale O string: 0325
on locale 1 string: 0325
on locale 2 string: 0325

on locale 3 string: 0325

*/
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2.3 Record parser API

The API for the record parser works with the 10 interface in Chapel and is not
dependent upon using HDF'S or anything else except for the functions provided
in I0.chpl and regexp support. The API is as follows:

new recordReader(type recordType, reader: channel,
regex: string): recordReader;

Creates a record reader that parses into the record of type recordType from
the channel reader using the regexp regex

new recordReader(type recordType,
reader: channel): recordReader;

The same as the first one, however this time the regex is inferred from the field
names in the record recordType. The regex created this way is very lax in terms
of how much whitespace there is between records. This could lead to naming
problems as well as there might be problems parsing into the record.

recordReader.get(): recordType

Returns one record and advances the position in the file to the end of where it
read. Will return error if it cannot return one.

recordReader.stream(): iter(recordType)

Returns a stream of records of type recordType until the regex no longer
matches. At end, leaves the channel position at the place where it read to.
An example of how to use this is as follows:

use RecordParser;

var f1 = open("test.txt", iomode.r);
var ch = fl.reader();

record Test {

var name: string;

var id: int;
}
var regex = "Name:_(.*)\\s*Id:,(.*)\\n\\n";
var M = new RecordReader(Test, ch, regex);
writeln("get O =,", M.get());
writeln("Now_ testing stream()");
for m in M.stream {

writeln(m);

}

ch.close();
fl.close();

/* Outputs:
get() = (name = one, id = 1)
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Now testing stream
(name = two, id = 2)
(name three, id = 3)

For test.txt =
Name: one
Id: 1

Name: two
Id: 2

Name: three
Id: 3
*/

2.4 MapReduce API

The API here is the simplest of them all and consists of only one function

HDFSiter(path: string, type recordType,
regex: string): iter(RecordType)

This is a leader-follower iterator that is locale aware in terms of data locality
(e.g. if blocks 0 and 1 reside on locales 0 and 1 respectively, it will read on and
work on locales 0 and 1 while using those blocks).

Many times what things might look like is:

use HDFSiterator;
record someRecord {
var idl: real;
var id2: real;
}
var regex = "ID1(.*)\\s*ID2(.*)\\n";
forall r in HDFSiter("/tmp/test.txt", someRecord, regex) {

<do something with r in here>

}

2.5 Flags in QIO
The flags for QIO are fairly straightforward and consist of:

e QIO_FDFLAG_READABLE Specifies that this file has been opened in a mode
that supports reading.

e QIO_FDFLAG_WRITABLE Specifies that this file has been opened in a mode
that supports writing

e QIO_FDFLAG_SEEKABLE Specifies that this file is seekable.



2.6 Hints in QIO

There are 5 types of hints:
e TOHINT_NONE Normal operation. We expect to use this most of the time.
e QIO _HINT_RANDOM We expect random access to this file.
e QIO_HINT_SEQUENTAL We expect sequential access to this file.

e QIO _HINT CACHED We expect the entire file to be cached and/or pulled in
all at once.

e QIO _HINT_PARALLEL We expect many channels to work on this file concur-
rently.
3 Examples

The examples here show how one might go about interfacing with the various
APIs provided in section [2]and while they are not supposed to be comprehen-
sive, the hope is that this section will provide enough guidance to get started.

3.1 System API

In this section we’ll walk through a simple example of implementing preadv for

© 00~ Ut WN -

RN NN H s e e
JO TN EXUNROO©OTIO U WN RO

HDFS.

qioerr hdfs_preadv (void* file,

const struct iovec *vector,

int count, off_t offset,
ssize_t* num_read_out)

~

ssize_t got;
ssize_t got_total;
qioerr err_out = 0;
int i;

STARTING_SLOW_SYSCALL;

err_out = 0;

got_total 0;
for(i = 0; i < count; i++) {
got = hdfsPread(to_hdfs_file(file)->fs,
to_hdfs_file(file)->file,
offset + got_total,
(void*)vector[i] .iov_base,
vector[i] .iov_len);
if( got !=-1) {
got_total += got;
} else {
err_out = qio_mkerror_errno();
break;
¥
if(got != (ssize_t)vector[i].iov_len ) {

10
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break;
}
}

if( err_out == 0 &&
got_total == 0 &&
sys_iov_total_bytes(vector, count) != 0 )
err_out = qio_int_to_err (EEQF);

*num_read_out = got_total;
DONE_SLOW_SYSCALL;

return err_out;

}

In lines 1-5, we take in the file pointer for our filesystem as a void*, a vector of
preallocated iovec buffers, the number of these vectors, the offset to read from
and the output to tell the runtime how much we were able to read. qioerr is
a QIO defined struct, and consists of an error number field and a message field
(4.e. an int and a const char*) and is a syserr in Chapel code.

In lines 11-30 we call STARTING_SLOW_SYSCALL which at this time does noth-
ing - and is meant to signify that we are doing a system call that might block -
however in the future this might do something to migrate threads, and therefore
errno’s might go away if you tried accessing them after DONE_SLOW_SYSCALL. In-
side the for loop we simply populate our vector of buffers until we cannot read
anymore, or until we have filled up all the buffers.

In lines 32-42 we check to see if we have read anything, if we don’t have an
error and we didn’t read anything and the vectors total length is not 0, then
we have encountered an unexpected EOF, and set the error to EEOF. We then
simply set the amount we’ve read and return.

3.2 Other APIs

In this example, we walk through the implementation of the HDFS leader-
follower iterator which uses the User API along with the RecordParser API.
The code for the leader is:

iter HDFSiter(param tag: iterKind,
path: string, type rec, regex: string)
where tag == iterKind.leader {

type hdfsInfo = 2%int(64);

var workQueue: [LocaleSpace] domain(hdfsInfo);

/] —=—== Create a file per locale ----

var hdfs = hdfsChapelConnect("default", 0);
var f1 = hdfs.hdfsOpen(path, iomode.r);
// —====——- Get locales for blocks ------

var fll1 = fl.getLocal();

11
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var (hosts, t) = getHosts(fll);

for j in 0..t-1 {
var h = getLocaleBytes(hosts, j);
writeln(h);
var r: hdfsInfo;
r(1) = h.start_byte;
r(2) = h.len;
workQueue[h.locale_id] += r;

}

coforall loc in Locales {
on loc {
forall block in workQueue[loc.id] {
var rr = fl.hdfsReader(start=block(1));

var N = new RecordReader(rec, rr, regex);
for n in N.stream_num(block(1), block(2)) {
yield n;
}
}

}
}

f1.hdfsClose();
hdfs.hdfsChapelDisconnect () ;
}

In lines 7-11 We first create an associative domain over our locales with
tuples of the form (start _byte, length) (in essence creating a work-queue for
each locale), we then connect to HDFS and open files on each of our locales.

In lines 14-24 we then get our local file and get a C array of structs of the
form (locale_id, start_byte, length) and the number of elements in that
array are returned as the second element of the tuple. We then go through each
element in the array and add it to our work-queue for that locale.

In lines 26-35, we go on each locale and in parallel run through the work
queue for that locale, returning records in parallel.

4 Future Work

Future work in this area has a couple different areas.

4.1 Locality

Right now, it is up to the programmer to create the ability to query where data
is stored as well how they wish to represent this data and make it viewable in
Chapel. However in the future it would be nice to have a locality API much
like the current file IO API and therefore make it easier for the library writer
to interface with Chapel level programs in such a way that they can leverage as
much benefit from a different filesystem as possible.

Also, it would be nice to have a way to deal only with data on a certain
locale when dealing with regular filesystems (such as LUSTRE, or other RAID

12
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0 type filesystems) the goal being so you could do something along the lines of

// Connect to, and open a filesystem here

forall stripe in file.stripes by 3 {
// Do something with every third stripe
}

Which gives the ability to easily reason about and use concurrency in RAID 0
type filesystems.

4.2 Replication of Files

Right now due to the way HDFS is structured, when hdfsOpen is called, it
creates a file per locale. This is not ideal, but at least at this point the only way
to be able to handle all cases in HDF'S since we do not know beforehand where
the various blocks of the file will reside.

On other filesystems, this could be different, and therefore the possibility to
minimize the number of files created becomes a possiblity. As well as this also
might allow us to represent this information in a more compact and meaningful
way.

Along with these options is the option to make this file creation and repli-
cation lazy in the sense that files will only be created on a locale iff a file is
needed on that locale. Otherwise, that locale will not get a file. This coupled
with caching the file once we’'ve opened it on a locale would also offer a speed
improvement.

5 Integrating with Other File Systems

To integrate with other filesystems, the user must modify a couple areas. For
example if we wanted to add Ceph [I], we would need to edit and change the
following:

e Create a plugin qio_plugin_ceph.c that is placed under runtime/src/qio/foreignFS/ceph
e Add the header file qio_plugin ceph.h to runtime/include/qio

e Add a Makefile.foreignFS-ceph to runtime/etc that will link in what
you need at the compile time of the program (this will normally include
include and libraries).

e You will need to add and replicate (renaming appropriately) the various
makefiles in runtime/src/qio/foreignFS/hdfs

e After this you should be able to make the ceph plugin by setting CHPL_FOREIGN_FS=ceph
and remaking the runtime.

13
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